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SUMMARY

The interaction of shock waves with turbulent regions can have a strong impact
on the flow evolution, and shock induced heating can trigger ignition, combustion
aiud turbulent flame propagation. The numerical resolution of mnulti-phase, turbulent
reacting flow is of fundamental importance but remains a very challenging probleimn.
The capture of strong discontinuities, typical of high-speed flows, requires the use of
shock-capturing schemes, which are not adapted to the resolution of turbulent struc-
tures due to their intrinsic dissipation. On the other hand, low-dissipation schemes
are unable to resolve shock fronts and other sharp gradients without creating high
amplitude numerical oscillations. Furthermore, the nature of turbulence in high-speed
flows differs from its incompressible behavior, and, in the context of Large-Eddy Sim-
ulation, the subgrid closure must be adapted to the modeling of compressibility effects
and shock waves on turbulent flows. The developments described in the present report
are two-fold. First, a state of the art closure approach for LES is extended to model
subgrid turbulence in compressible flows. The energy transfers due to compressible
turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are
assessed and integrated in the Localized Dynamic k*9° model. Second, a hybrid nu-
merical scheme is developed for the resolution of the LES equations and of the model
transport equation, which combines a central scheme for turbulent resolutions to a
shock-capturing method. A smoothness parameter is defined and used to switch from
the basc smooth solver to the upwind scheme in regions of discontinuities.

It is shown that the developed hybrid methodology permits a capture of shock / tur-
bulence interactions in direct simulations that agrees well with other reference siinula-
tions, and that the LES methodology effectively reproduces the turbulence evolution
and physical phenomena involved in the interaction. This numerical approach is then
employed to study a problem of practical importance in high-speed mixing. The
interaction of two shock waves with a high-speed turbulent shear layer as a mixing

augmentation technique is considered. It is shown that the levels of turbulence are

increased through the interaction, and that the mixing is significantly immproved in




this flow configuration. However, the region of increased mixing is found to be local-
ized to a region close to the impact of the shocks, and that the statistical levels of
turbulence relax to their undisturbed levels some short distance downstream of the
interaction. The present developments are finally applied to a practical configuration
relevant to scramjet injection. The normal injection of a sonic jet into a supersonic
crosstlow is considered numerically, and compared to the results of an experimental
study. A fair agreement in the statistics of mean and fluctuating velocity fields is
obtained. Furthermore, some of the instantaneous flow structures observed in exper-
imental visualizations are identified in the present simulation. The dynamics of the
interaction for the reference case, based on the experimental study, as well as for a
case of higher freestream Mach number and a case of higher momentum ratio, are
examined. The classical instantaneous vortical structures are identified, and their
generation mechanisms, specific to supersonic flow, are highlighted. Furthermore,
two vortical structures, recently revealed in low-speed jets in crossflow but never

documented for high-speed flows, are identified during the flow evolution.




CHAPTER I

INTRODUCTION

There is a renewed interest in the research community in high altitude and high-speed
flight. Advanced designs for supersonic and hypersonic vehicles still require significant
developments, particularly in the field of propulsive systems. Ramjet engines, in which
the incomning air flow speed is decreased to subsonic speed relative to the engine, can
be efficiently used for M = 3 to 5 flight regimes, but beyond these speeds, alternate
propulsion systems are required. The Supersonic Combustion ramjet (or scramjet)
engine, where the incoming airflow is decelerated but remains supersonic within the
engine, is one of the most promising propulsion options. The study of mixing and
combustion processes in supersonic environment has thus been the topic of on-going
research. A review of scramjet propulsion (Curran and Murthy [2000]) highlights
the different programs in Japan, Russia, Germany, France and the United States,
including their specific and complementary aspects.

Studies of high-speed mixing have been, for the most part, experimental. Progress
in high-speed imaging and acquisition systems have permitted the development of
sophisticated methods that provide qualitative and quantitative evaluations of super-
sonic velocity (supersonic PIV, LDV) and scalar fields (Planar Laser Scattering, Pla-
nar Laser-Induced Fluorescence, CARS thermometry). These campaigns are however
limitcd by the lack of modularity and the high cost associated with the experiniental
rigs. The development of high accuracy, low cost, dynamic numerical simulations,
on the other hand, could make Computational Fluid Dynamics (CFD) a complemen-
tary tool for preliminary design purposes, as insights into the plysics involved in
fundamental configurations and in specific geometries could be gained. To be opcra-
tional, such a numerical tool should be able to simulate high-speed flows reliably, at
rcasonable computational cost.

Turbulence in such engines is of fundamental importance, as fast mixing of fuels
and oxidizers is a requirement to an efficient and stable combustor. Turbulence in
compressible flows differs from its incompressible counter-part, and an accurate nu-
merical approach should account for these changes. The developments presented in
the present report focus on the development of a novel numerical methodology for
accurate low-cost calculations of high-speed turbulent flows. To better understand
the challenges associated with this development, we first review the physics of com-
pressible turbulence, from the early observations and interpretations to the current
knowledge. We then present an overview of the challenges encountered during the
design of high-fidelity numerical schemes for the numerical rcsolutions of high-spced
turbulent flows.




1.1 Turbulence in Compressible Flows
1.1.1 Compressible Turbulence

Turbulence is present in most flows of practical interest and has a strong iinpact on
their evolution. The seemingly random fluctuations in pressure, velocity, etc. can
significantly change the dynamics of a system, increasing the drag over a body and
generating noise, but also leading to high levels of mixing. Turbulence has for these
reasons been the focus of a large body of research, involving theoretical, analytical,
experimental and, more recently, numerical works. Despite the chaotic nature of
turbulence, reliable predictions can be made for many simple, fundamental config-
urations. However, due to the large span of time- and length- scales involved, the
complexity of the flow equations, and the variability in experimental and nuineri-
cal studies, the fundamental physics of turbulence is not yet fully understood, and
remains a very active and prolific area of research.

Most of tlhe early studies have concentrated on simpler incompressible flows, that
is, flows with little fluctuations in density associated with pressure fluctuations. The
sunplifications brought to the governing equations from the incompressible assump-
tion facilitate theoretical and analytical derivations. Furtherinore, experimental stud-
ies are often limited to low-speed incompressible conditions. Yet, the quest for in-
creased flight speeds has been a major motivation for aeronautical developments, and
the study of compressible turbulent flows has become necessary as flight speed has in-
deed increased. The characterization of high-speed coinpressible and turbulent flows
is an effort that lias coinbined analytical studies to experimental observations. A tur-
bulent flow is called compressible when a significant ainount of density fluctuations
is formed in response to perturbations in the pressure field (Lele [1994]), and these
density variations are associated with local velocity divergence. Kovésznay [1953]
carried out a small perturbation analysis of the Navier-Stokes equations and showed
that a field of turbulence could be essentially decomposed into tliree modes of fluc-
tuations: vorticity, acoustic and entropy modes. In first order analysis, these modes
are decoupled. However, higher order analyses show that mode coupling occurs, and
that any two modes can interact through non-linearities and generate all three modes
(Chu and Kovédsznay [1958]). Furthermore, the turbulent velocity is characterized
as the superposition of a solenoidal (non-divergent) component, and a dilatational
(irrotational) part obtained from a Helmholtz decomposition. The first contribution
is found in incompressible flows, whereas the second component is typical of com-
pressible flows. Their energetic behaviors are very different in nature. The vortical
structures of the solenoidal field interact through non-linearities and viscous forces,
and form the well-known energy cascade. The dilatational field is an ondulatory and
propagative mode, where kinetic energy is exchanged with the energy contained in
the thermodynamics fluctuations. The energy balance in compressible turbulence
is then nore complex than in the incompressible case as new physical plienomena
arise. The turbulent production and solenoidal dissipation (hereafter noted P and
€, respectively) are the main actors of the energy budget in incompressible turbulent
flows. The new energy transfers, highlighted in Fig. 1.1, come from the dissipation




- IMean pressurey, -

dilatation
Mean
S ‘ ) Thermal Ener
Kinetic Energy Viscous € gy
heating

Turbulent
Kinetic Energy

Figure 1.1: Transfers between mean kinetic energy, turbulent kinetic energy and
thermal energy (adapted from Ristorcelli [1997]).

of compressible turbulence by the dilatational dissipation (e4) of turbulent kinetic
energy and by the pressure dilatation correlation (< pd >). These decompositions
have been eniployed in Rapid Distortion Theories aud Linear Iuteraction Analyses in
order to gain insight in the fundamental processes of compressible turbulence. This
analytical work is however limited to fundamental, homogeneous flows, and cannot
be applied to general and practical configurations.

These modal decompositions are also often used in the interpretation of experi-
mental results. Multiple experimental studies have focused on high-speed shear layers
and their deviation from the incompressible behavior. The skin friction coefficients in
a high-speed boundary layer and the mixing layer growth rate were found affected by
the free-stream velocity / Mach number. Two types of compressible turbulent flows
have been identified: those affected by the variations in the mean thermodynamics
fields, and those that contain small scale fluctuations in thermodynamics variables
that interact with the turbulent structures. High-speed boundary layers were found
to be mostly affected by the large density/temperature gradients within the layer. If
properly scaled (e.g., van Driest [1951]), these high flows could be directly related
to the incompressible boundary layers. Morkovin [1962] postulated that the acous-
tic mode was negligibly small in a typical non-hypersonic boundary layer, and that
the entropy mode was also negligible for adiabatic flows. Small scale fluctuations
in the thermodynamics field would then be associated with the velocity fluctuations
thirough an isentropic process. The vortical mode of fluctuations is dominant, and
the turbulent structures are comparable to their incompressible counter-parts (Brad-
shaw [1977], Friedrich and Bertolotti [1997]). From that perspective, compressible
turbulence plays little role in the physics of supersonic boundary layers.

Turbulent mixing layers, on the other hand, were found to be strongly affected by
the flow compressibility. Experiments have shown that tlie mixing layers growth rate
is reduced as the levels of compressibility are increased (Brown [1974], Papamoscliou
and Roshko [1988]). Also, the turbulent structures in the flow are changed in high




speed flows: the turbulent shear stress decreases, and the normal stress anisotropy in-
creases in increasingly compressible mixing layers. Furthermore, the (reduced) growth
rate is a visible and easily measurable quantity. Parameterizations of the eftects of
compressibility on spatial mixing layers have been obtained, that relate the ratio of
the compressible to the incompressible growth rates to a quantification of the level
of compressibility in the shear layer. The convective Mach number (M., defined
from the velocity difference and the average speeds of sound in the two streams, Pa-
pamoschou and Roshko [1988]), and other parameters (Slessor et al. [2000]) have been
proposed as a measure of the compressibility levels, leading to a fairly good collapse
of well-documented experimental data of growth rate reduction onto a single curve
(Barone et al. [2006]). Another motivation for the study of high speed mixing layers
lies in tlie practical implications of the reduced growth rate: mixing is of fundamental
interest for high-speed propulsion systemns, where fuel / oxidizer mixing is of great
importance. For these reasons, this configuration is an ideal candidate for the study
of compressible turbulence in practical flows, and has been the focus of many studies,
but the actual impact of compressible turbulence could not be estimated.

A new look into the fundamentals of compressible turbulent dynamics has emerged
with the development of highly accurate computational techniques and the direct nu-
merical simulations of isotropic turbulent and homogeneous shear flows. The objective
of the early studies was the characterization and quantification of the compressible
energy transfers, reviewed earlier, then regarded as the main cause for the shear layer
growth rate reduction. More particularly, the increasing impact of the dilatational
dissipation with compressibility was primarily suspected, and many researchers have
studied its evolution, eventually leading to scaling laws and models for ¢;. Zeman
[1990] attributed the most part of the dilatational dissipation to the appearance of
shocklets in the flow. These regions of localized compressions (shocks in regions of
strong dilatational velocity fields, which satisfy the Rankine-Hugoniot relations) have
been observed in direct simulations of two-dimensional shear layers, and found to
strongly impact the mixing layer developments. From an assumed probability den-
sity function of the occurrence of shocklets, Zeman [1990] proposed a simple modeling
expression for the dilatational dissipation in this analytical work, relating ¢, linearly
to €,, with a exponential dependence on the square of turbulent Mach number M,
(defined as the Mach nuinber based on the rms velocity of the turbulent kinetic en-
ergy). Anotlier closure for the dilatational dissipation was derived by Sarkar based
on DNS simulations of isotropic compressible turbulence (Sarkar et al. [1989]) and
homogeneous shear flows (Sarkar [1992]). Again, a linear scaling between solenoidal
and dilatational dissipations was found, with a proportionality factor depending on
M?. The other compressible energy transfer, the pressure dilatation correlation, has
also been regarded as a major means of turbulence modification in compressible flows.
Acoustic modes, amplified through pressure-dilatation, were believed to lead to acous-
tic losses, hence reducing the levels of turbulent kinetic energy in the flow. Again,
many researchers have studied the structural form of this energy transfer, and several
models have been proposed (Zeman [1990], Taulbee and Van Osdol [1991], Sarkar
[1992], El Baz [1992]).

These models successfully reproduced a decrease in the mixing layer growth rate,



but failed to capture the changes in the mixing layer turbulent statistics, and dete-
riorated the simulations of high-speed boundary layers. Their physical relevance was
questionable. The presence of shocklets has not been confinmed in experiments and
three-dimensional numerical simulations unless relatively high Mach numbers (well
above the lowest Macli numbers showing compressibility effects) are considered (Vre-
man [1997], Rossmann et al. [2002], Fu and Li [2006]). Furthernore, the effective
dissipation due to these features, when present, is found to be at most a few per-
cent of the overall dissipation (Lele [1994], Vreman [1997]). These early models were
found not to represent the physics of energy transfers in fully developed compressible
turbulence, but rather modeled the evolution of flows away from acoustic equilibrium.

More insight into the developinent of supersonic nixing layers has been gained
later from analytical results, Rapid Distortion Theory studies and DNS studies of
compressible mixing layers. The principal mnodes of instability change as the convec-
tive Mach nuinber is increased. The two-dimensional, most unstable 1mnodes of incoin-
pressible mixing layers (Michalke [1964], Pierrehumbert and Widnall [1982], Metcalfe
et al. [1987]) are found to persist for convective Mach numbers up to M, = 0.6,
though the growth rate of the wave decreases as the Mach number is increased. Af-
ter M. = 0.6, the most unstable mode of the inixiug layer has been found to be
three-dimensional, with further decrease in the instability growth rate (Sandhamn and
Reynolds [1991]). These trends persist in the non-linear regimes (Lele [1994]). It has
been shown that the pressure strain correlation, which re-distributes the turbulent
kinetic energy between the different components of the turbulent stresses, decreased
with the convective Mach number, hence increasing the shear stress anisotropy (Sarkar
[1995], Shmone et al. [1997]). The turbulent production is then reduced, and the tur-
bulent kinetic energy within the inixing layer decreases. Modifications in turbulent
behavior for compressible mixing layers is found to be mostly of a structural nature.

At the same time, a more fundamental understanding of compressible turbulence
has been gained from analytical and spectral studies. Fundamental studies have
shown that the solenoidal velocity field in isotropic turbulence is not strongly af-
fected by the levels of compressibility. The spectral representation of the solenoidal
energy shows a persisting k=% behavior in the inertial range, unless high values of
the turbulent Mach number are considered (M; = O(1), Lele [1994], Bataille et al.
[1997]). Furthermore, the amount of dilatational energy remains relatively small for
moderate values of the turbulent Mach number. It has also been shown that the
dilatational dissipation scales as M}, and inversely to the Reynolds number in the
limit of small turbulent Mach numbers (Ristorcelli [1997], Fauchet and Bertoglio
[1999]). The pressure-dilatation is related to the departure from equilibrium in the
turbulent energy budget (balance between production and dissipation), and can ac-
cordingly play a non-negligiblc role in out-of-equilibrium flows. The energy losses
due to acoustic radiation were, however, found to represent a rather small portion of
the turbulent kinetic energy production in many cases (Lele [1994], Dussauge [2001]),
unable to represent alone the turbulent kinetic energy reduction. Finally, it should
be noted that high values of M, are not likely to be encountered in configurations
of practical interest, unless hypersonic speeds arc considcred (Ristorcelli and Blais-
dell [1997], Ristorcelli [1997], Dussauge [2006]), leading to a "weakly compressible




nature of turbulence” (Ristorcelli and Blaisdell [1997]). The swnall M, developments
described here are valid for a large range of practical configurations.

Overall, it is seen that turbulence in high-speed flows is mostly solenoidal, with lit-
tle contributions from the dilatational components of the velocity field. Furtherinore,
the universal scales of the solenoidal component of the velocity are not affected by the
presence of compressible turbulence, and still show an incompresstble behavior. Scal-
ings of the dilatational dissipation and pressure-dilatation correlation show that the
former is negligibly small for most cases of practical turbulent flows (small M, large
Reynolds nuinber), whereas the latter can play a role in out-of-equilibrium flows, and
should be considered in the turbulent energy budget. The most important impact of
compressibility on the turbulent behavior resides in the modification of the Reynolds
stresses caused by the reduced pressure strain rate correlation.

1.1.2 Shock / Turbulence Interaction

The findings presented earlier have highlighted the very low levels of compressible
(dilatational) velocity in many practical configurations. The changes in compressible
turbulent flows have been found to be mostly of a structural nature. These results are
valid for flows with small bulk dilatation, that is, when the length-scales of the tur-
bulent fluctuations are comparable or smaller than the characteristic length-scales of
the pressure fluctuations. The presence of strong compressions, typical of supersonic
flows, changes the considerations presented earlier, and lead to a different evolution
of the turbulent statistics.

Interactions of shocks with shear flows occur in many high-speed flow situations
such as external aerodynamics of transonic, supersonic and hypersonic vehicles or
internal flows in scramjets. Such interactions can have a strong impact on the flow
evolution, increasing turbulent inixing, but also increasing losses and surface drag
and/or leat transfer depending upon the strength of the shock. Many studies of
shock / turbulence interactions have been conducted, both nuinerically and experi-
mentally (see Andreopoulos et al. [2000] for a review), and physical insights have been
gained from the studies of simple test cases, such as the interaction of shocks with
isotropic and/or homogeneous turbulence, studied experimentally (e.g., Jacquin et al.
[1993], Honkan and Andreopoulos [1992], Barre et al. [1996], Agui et al. [2005]) and
nunierically using high-order shock capturing methods (e.g., Lee et al. [1993], Han-
nappel and Friedrich [1995], Lee et al. [1997], Mahesh et al. [1997], Jamme et al. [2002,
2005]) and, more recently, using a shock-fitting method (Sesterhenn et al. [2005]).

It has been shown that shock / turbulence interactions generally lead to an ampli-
fication of all components of the turbulent stresses, and consequently of the turbulent
kinetic energy. In the case of shock / isotropic turbulence interactions, linear analysis
shows that the stream-wise component of the stress is the most amplified for a mean
flow Mach number of M < 2, and that the trend is reversed afterward. As the mean
flow Mach number is further increased, the amplification factors saturate at M =~ 3
(Lee et al. [1997]).

A more detailed observation of the turbulence evolution behind the shock shows
that the transverse fluxes decrease first in the post-shock region as a consequence



of the compression, while the streamwise stress is directly amplified In response to
the incoming fluctuations in velocity and thermodynamics, the shock front corrugates
and oscillates around its mean position. This phenomenon leads to the generation
of pressure and dilatational velocity fluctuations behind the front. The acoustic po-
tential energy created from this corrugation feeds the Reynolds stresses: evanescent
acoustic waves amplify the levels of turbulence further downstream of the iuteraction
(Lee et al. [1993, 1997], Jamme et al. [2002]). This energy transfer occurs over a
short region behind the shock, and amplifies mostly the dilatational velocity field,
lience increasing the level of compressible turbulence. The non-linear coupling be-
tween solenoidal aud dilatational modes leads to a redistribution of the energy, leaving
downstream a field of homogeneous and mostly solenoidal turbulence.

The amplification of the turbulent stresses behind the shock was found to be de-
pendent on the shape of the initial energy spectrum of the incoming turbulent fields,
its thermodynamic state and its level of compressible turbulence (Lele [1994], Hau-
nappel and Friedrich [1995]). Lee et al. [1997] demonstrated that the physics of the
interaction shock / turbulence actually had only little dependence on the initial spec-
truin, but much stronger correlation was found for the other parameters. Linear anal-
ysis and direct simulations showed that thermodynamic and entropy fluctuations were
reduced through the interaction, even more so as the Mach number was increased.
Correlations between streamwise velocity and temperature fluctuations of the initial
turbulent field were found to influence the anti-correlation of vortical and acoustic
modes in the post-shock region, and impact the level of stress amplification. A posi-
tive correlation between streamwise velocity and temperature fluctuations reduces the
stresses amplification factor and increases the transverse characteristic length-scales,
while a strongly negative correlation results in an essentially opposite trend (Mahesh
et al. [1997], Jamne et al. [2002]), significantly impacting the interaction of shock
waves with turbulent boundary layers.

1.2 Numerical Simulation of Compressible Turbu-
lent Flows

Siinulations of supersonic turbulent flows are a somewhat recent effort. Most of
the early numerical schemes were found either too dissipative to perform turbulent
studies, or incompatible with the strong variations found in compressible turbulent
flows. Besides fundammental studies, the resolution of practical configurations in com-
pressible environment by Reynolds Averaged Navier Stokes (RANS) or Large-Eddy
Simulations (LES) suffered from the same inadequacy of the computational methods,
and from the absence of closure models adapted to high-speed turbulent flows. The
challenges that need to be faced to develop a reliable LES methodology for the sim-
ulation of compressible turbulent flows are two-fold: first, the resolution of turbulent
flows requires highly accurate non-dissipative schemes. Second, the practical simu-
lations of turbulent flows cannot be performed exactly for full-scale configurations,
and modeled equations have to be solved for this flows. The relevance of the results
depends on the accuracy of the modeling method adopted.




1.2.1 Numerical Issues in Supersonic Turbulent Flows Computations

A proper computational methodology requires highly accurate numerical schemes that
periit the capture of flow discontinuities such as shocks and contact discontinuities,
as well as the resolution of turbulent structures. This is a challenging task, as the
self-steepening nature of shock waves requires a dissipative scheme to enable their
capture with reduced unphysical oscillations, whereas a low-dissipation is desired for
the accurate resolution of turbulent fields. The techniques developed for tle resolution
of the hydrodynamics equations, where crisp discontinuity capturing is desired, are
presented first. The second part reviews the development of algorithms for the studies
of turbulent flows in supersonic environments, where, n addition to shock-capturing
properties, a low dissipation is desired.

e Upwind schemes for the resolution of supersonic flows

Until 1959, most numerical approaches were based on the expansion of the gov-
erning equations into Taylor series to obtain a finite difference approximation to
the governing equations. Iniplicitly, the functions discretized are assumed continuous
with continuous derivatives. This assumption is certainly not true in supersonic flows,
where shocks and contact discontinuities are part of the flow. Many researchers have
developed directionally biased numerical methods to handle physical discontinuities.
Even then, most schemes were found to be dispersive, which led to high amplitude
non-physical oscillations in the regions of the discontinuities.

Godunov [1959] first recognized that this assumption of continuous functions could
be relaxed by resolving the Euler equations in a finite volume framework (while most
studies until then were using finite difference), and resolving a Riemamm problem for
every interface. Getting an evaluation of the fluxes through the exact solution of
the non-linear problem relaxed the assumption of continuous variables. This method,
which allowed the non-dispersive resolution of flows with discontinuities was applied,
and, to some extent, further developed in the following years. In tlie beginning of
the 1970’s, fundamental studies on the mathematical formulation of upwind schemes
for the resolution of systenis of hyperbolic equations were conducted (Lax [1972],
van Leer [1973]), which later led to the development of more accurate, more stable
and less dissipative metliods. Among the first such contributions, and maybe one of
the most influential, was the Monotone Upstream Centered Schemes for Conserva-
tion Laws (MUSCL) approach of van Leer [1973, 1974, 1979], where a liigher order
reconstruction of the physical field was achieved, while preserving the monotonicity
of the solution.

Further developments of upwind schemes followed in the 1980’s, based on the
previous studies. Colella and Woodward extended the order of the reconstruction
method, and developed the high-order and very accurate Piecewise Parabolic Method
(Colella and Woodward [1984]). A framework was devised by Harten et al. [1987], for
which an arbitrary order of accuracy can be achieved by adapting the stencil for the
reconstruction to an adapted snioothness parameter. This scheme, based on the Total
Variation Bounding condition and called Essentially Non Oscillatory (ENO) scheme,




has been further extended by Liu et al. [1994b] to the Weighted Essentially Non
Oscillatory (WENO) scheines, resulting in sharper resolutions of the discontinuities.

The developments conducted during that decade also included the design of ap-
proximate Riemann solvers needed for the closure of these upwind schemes. Exact
Riemann solvers suffer from prohibitive costs. Researchers have started defining ap-
proximate solvers that satisfy acceptable accuracy, while significantly reducing the
simulation’s cost. The approximate Riemann solvers of Osher and Chakravarthy
[1983], Roe (Roe [1981]), Harten-Lax-vanLeer (Harten et al. [1983]), the Two-Shock
Riemann Solver and the Adaptive Non iterative Riemann Solver (Toro [1999]) are
among the most commonly used. These schemes are referred to as Flux Difference
Splitting (FDS) methods. Other shock-capturing mmethods have been addressed, such
as the Flux Vector Splitting (FVS) techniques. Most of the FVS approaches, of-
ten used in external aerodynamics simulations, are based on the FVS of Steger and
Warming [1981], or on the FVS method of van Leer [1982]. These methods are very
appealing due to their great simplicity and computational efficiency. However, their
excessive dissipation has led researchers towards the development of new schemes,
that combine the simplicity/cost advantages of FVS methods, and the accuracy of
FDS imethods, by splitting the treatment of the inviscid equations into pressure-
based fluxes and convection-based fluxes, leading to the Advection Upstream Split-
ting Method (AUSM) class of schemes (Liou and Steffen [1993]). The diffusion of
these methods remains sinall and viscous flows can be correctly captured. Finally,
the shock-fitting techniques have raised a recent interest. Their basis is the treatment
of shock waves as propagating discontinuities, resolved with the dynamic Rankine-
Hugoniot relations and the integration of this discontinuity to the global resolution.
Their inclusion in general three-dimensional simulations is however complex and pro-
hibitively expensive.

e Hybrid nuinerical schemes for the study of compressible turbulence in supersonic
Hows

The study of compressible turbulent flows using Direct Numerical Simulation
(DNS) and LES can be performed using a wide variety of schemes. Central schemnes,
Padé differencing, compact schemes or spectral methods are comnmonly used in such
studies. Their use for simulations wlere strong gradients are present is, however, in-
adequate, and alternate approaches are required. Upwind methods with very fine res-
olutions, such that the inherent numerical dissipation does not dominate the turbulent
behavior, have been successfully employed in the past. High resolution simulations
of compressible turbulence, for instance, have been performed using ENO/WENO
schemes (Ladeinde et al. [1996], Martin [2006]), or the Piecewise Parabolic Method
(PPM) (Mirin et al. [1999]). Such simulations are, however, not always feasible. Lee
et al. [1997] showed in a DNS study of shock / turbulence interaction that the use of a
sixth-order ENO scheme throughout the domain significantly dissipates the turbulent
energy of the flow.

Hybrid schemes have been proposed for the resolution of high-speed viscous prob-
lem in the context laminar flow simulations and/or under-resolved DNS studies, where




schemes developed to capture flow discontinuities were found to be too dissipative and
to artificially increase boundary layer thicknesses and other viscous properties of the
flow. One of the first examples of hybrid schemes was proposed by Harten and Zwas
[1972], blending a Lax-Wendroff method and a Lax-Friedrichs approach, Harten [1978]
later revisiting this methodology and replacing the Lax-Friedrichs scheme with a first
order upwind approach. These formulation, though capable of capturing some of the
important flow physics, were found to strongly depend on the shock detection for-
mulation, and lack universality. The numerical scheme presented by Jameson et al.
[1981] can be seen as a hybrid methodology, where a central scheme with second-order
artificial dissipation, for shock capturing purpose, is blended with a central scheme
with fourth-order artificial dissipation for smooth flow resolution.

The development of hybrid methodologies switching explicitly between different
fluxes evaluations has gained popularity in the studies of high-speed turbulent flows
from a DNS stand-point. Some studies have been conducted using primitive, non
self-adapting hybrid schemes, in which the stationary properties of the flow were
used to arbitrarily separate thie regions where upwind schemes are used from those
wlere ceutral/spectral/compact schemes are used (Lee et al. [1997], Mahesh et al.
[1997]). For instance, for the resolution of shock / turbulence interaction by DNS,
Lee et al. [1997] used a sixth-order ENO shock-capturing scheme only in the mean-
flow direction, over a relatively short region surrounding the mean shock location,
defined offtine, and used a Padé scheme over the remaining cells, and for all cells in
the transverse directions to minimize dissipation effects.

Hybrid schemes, wlhere two different flux computations are employed in differ-
ent regions of the domain, are currently being developed for similar applications. A
dynamic switching procedure is usually associated with these schemes. The local
smoothness of the flow is evaluated and used to determine the scheme to employ.
Many of these hybrid schemes use compact schenies for the capture of the turbulent
structures in the flow, as these schemes show a spectral-like resolution. Further-
more, using low-pass spatial filtering techniques, these methods have been applied to
curvilinear grids. However, compact schemes are poorly suited to tlie resolution of
transouic to supersonic flows, creating high ainplitude, unphysical oscillations, and
much work has been devoted to the stabilization of these schemes in shock-containing
flows, spanning from artificial diffusion (Cook and Cabot [2004], Kawai and Lele
[2008]) to the application of adaptive filters, reducing the accuracy in close shock
regions only (Visbal and Gaitonde [2005]). In the context of hybrid methods, these
compact schemes have been combined to TVD (Rizzetta et al. [2001]), ENO (Adaus
and Shariff [1996]) or WENO (Pirozzoli [2002], Ren et al. [2003]) schemes and have
been found well suited to simple canonical flows. However, extension to complex
(practical) geometries and parallelization of such codes is difficult (Hill and Pullin
[2004]), and the computational cost of these schemes is rather high, which makes
such schenies unadapted to full scale simulations.

Alternatively, hybrid schemes that employ classical central schemes for the res-
olution of the smooth regions in the flow have been proposed (Vreman [1997], Hill
and Pullin [2004], Kim and Kwon [2005], Fryxell and Menon [2005]). Their low cost,
good accuracy and applicability in complex domains make them suitable candidates
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for practical applications. Furthermore, their adaptability to body-conforming grids
perits the development of methods valid in practical geometries.

1.2.2 Turbulence Modeling for Compressible and High-Speed Flows

Turbulent flows are entirely described by the Navier-Stokes equations, which involve
a very large range of time- and length- scales. Direct Numerical Simulations of com-
pressible flows can be performed for fundamental configurations, and can provide
valuable insights into the physics and processes of canonical flows. Their extension
to arbitrary, realistic flows of interest is not yet feasible, as the computational re-
sources required increase significantly as the simulated Reynolds nuinber is increased.
Practical, full-scale geometries usually involve very Ligh Reynolds numbers, orders
of magnitude larger than what is currently achievable with DNS. The universality
of the small scales of turbulence has been exploited to reduce the computational re-
quirements. A scale separation permits one to distinguish the geometry-dependent
energetic scales, wlich require an exact resolution, from the universal scales, wlich
can be modeled from theoretical and analytical considerations, or from experimental
observations.

In this coutext, statistical averages of tlie turbulent mnotions are commonly used.
Reyuolds-Averaged Navier-Stokes (RANS) simulations permit a capture of the time-
averaged fields of the flow, and can provide detailed information on some physical
features and processes in a complex environment, provided an accurate turbulence
model is used. The entire spectrum of turbulent statistics (in time and space) must be
accounted for in the models used in these simulations. Furthermore, the dynamics of
tlie system is lost. Mauy applications are strongly affected by the unsteadiness of the
physical processes, and cannot be captured correctly by time-averaged methodologies.
Large Eddy Simulations are an alternative approach to RANS for the simulation of
turbulent flows. There, the universality of turbulence at the small length-scales is
exploited. The large scales are explicitly resolved, and their interaction with the
siall scales modeled. The temporal evolution of the flow is explicitly solved. A
proper modeling of the simall (subgrid) scales is required in this approach.

Most numerical studies of high-speed flows are based on models developed for
inconpressible flows and include some compressibility corrections derived from sonie
of the early work described earlier. The dilatational dissipation model of Sarkar [1991]
is often used in practical models (Delarue and Pope [1997], Oevermann [2000}, Park
and Mahesh [2007]) This scaling relates the compressible dilatation to the solenoidal
dissipation as:

€4 = (g (M12+O(Mt4)) €qg (11)

As reviewed earlier, this nodel does not reflect the correct physics of compressible
dilatation, but it is still used as it is successful in capturing the reduced growth rate
of compressible mixing layers. The actual variations of the dilatational dissipation
for relevant aerodynamics applications was shown by Ristorcelli [1997] and Shao and
Bertoglio [1996] to scale as:

= —e¢, (1.2)



with an iuverse proportionality to the Reynolds number (Re;). From these consid-
eratious, the dilatational dissipation is expected to play an important role only i
the context of high M, and low-Reynolds number compressible flows. Several niod-
els for the pressure-dilatation have also been proposed. Sarkar [1991] conducted a
scaling analysis based on the decomposition of the pressure field into coutributions
of incompressible and purely compressible components, aud found from DNS stud-
ies of isotropic compressible turbulence (Sarkar [1991]) and compressible shear flows
(Sarkar [1992]) that the pressure-dilatation scales as:

< pd >= —a; PM; + age, M} + a3Sikk M} (1.3)

where Si represents the flow dilatation. This niodel is still used in some RANS
applications (Calhoon et al. [2006], Fasel et al. [2006]) In practical aerodynamics
flows, this correlation was found from asymptotic analysis to be a function of the
departure from equilibrium of the turbulent kinetic energy budget. Ristorcelli [1997]
found that:
W e

< pd >x M; (7) [P —¢€] (1.4)
where S is the rate of strain and k the turbulent kinetic energy. This model has been
integrated in second order moment closure models to model the isotropic part of the
pressure strain correlations (Adumitroaie et al. [1999]). Other studies have closed
the pressure-dilatation correlation by explicitly tracking the density and/or pressure
variance in the simulation (Taulbee and Van Osdol [1991], Durbin and Zeman [1992],
Yoshizawa [1995], Hamba [1996]).

Many models have been proposed and employed to account for the influence of
the dilatational turbulence on the flow evolution. Most of the early inodels have been
derived from direct simulations, where arbitrary levels of compressibility were used
for initial conditions, and did not represent the physics of well-developed conipressible
turbulent flows. Other models have been suggested where the energetic transfers are
not modeled directly, but require the resolution of (multiple) additional equations
within the flow, leading to higher levels of complexity and modeling uncertainties.
Models that integrate the analytical scalings of the compressible energetic transfers
have not yet been proposed for simple, energetic closure approaches.

1.3 Present Study

The goal of the present study is to develop a comiputationally efficient Large-Eddy
Siinulation methodology adapted to the resolution of high-speed turbulent flows for
practical applications. To achieve this goal, two objectives have been identified and
addressed. The first objective consists in developing a nunierical method that satisfies
the coustraints imposed by the siinulations of turbulence in high-speed flow. Regions
of strong discontinuities have to be captured as a part of the solution, so that the
methodology can be applied to general flows with propagating waves. In that sense, a
locally dissipative scheme must be employed. Away from discontinuities, the scheme
must be adapted to the resolution of smooth flows dominated by turbulent structures,
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reducing the amount of intrinsic dissipation. A hybrid numerical scheme is developed
and presented iu this study, that combines a fourth-order central scheme to a flux-
difference splitting approach for shock-capturing purpose. A switching procedure
based on an evaluation of the local flow smoothness is used to combine these two
nuierical schemes.

The second objective is to extend a state of the art closure approach to properly
model the relevant physical features that arise in supersonic compressible turbulence.
A model adapted to the resolution of high-speed turbulent flow must integrate the
modes of energy transfer typical of compressible turbulence. Furthermore, the energy
budget in shock / turbulence interactions must be modeled correctly. As reviewed
earlier, the level of compressible turbulence in practical flows is small comnpared to the
incompressible contribution. The extension of a low-compressibility model to include
compressibility effects is justified. The Localized Dynamic £*9* Model (LDKM) is
extended in the current study to model the pressure-dilatation correlation, importat
in non-equilibrium flows, and the diffusion of turbulent energy by pressure fluctua-
tions, which plays an important role in shock / turbulence interactions. Based on the
analytical scalings described earlier, the dilatational dissipation is found negligible in
the problems of practical interest, where typical Reynolds numbers are high and the
turbulent Mach number low. This inode of energy transfer is neglected in the present
developments. The structural changes of the turbulent features with compressibility
are captured through the dynamic evaluation of the closure model.

The LES methodology developed during the present study is validated against fun-
damental studies of canonical flows and practical applications of interest. Notably, a
re-examination of the shock / turbulence interaction is performed in the context of
DNS, to assess the performance of the hybrid methodology, and is repeated using the
LES methodology to show the proper capture of the physical phenomena involved
in this problem. This study is then extended to tlie analysis of the physics involved
in a shock-induced mixing enhancement technique. Furthermore, the simulation of a
configuration relevant to scramjet injections is performed. The classical configuration
of a sonic jet injection into a supersonic cross-flow is used to highlight the compress-
ible closure performance, and a study of dynamical behavior of the problem, with a
particular emphasis on the dynamics of the turbulence evolution, is performed.

This report summarizes the key developments and results obtained in the course of
this project. Chapter 2 presents the mathematical modeling used in the present for the
simulations of compressible turbulent fluid flow. The chapter opens with a description
of the Navier-Stokes equatious for a compressible flow, followed by a derivation of the
LES equations that result from a filtering operation. The unclosed terms that result
from the filtering operation aud require modeling are then highlighted. This chapter
is closed by presenting the modeling approach adopted for this study, including the
modeling of the compressible terms, specific to the present development.

The second developmental aspect of this work is presented in Chap. 3. This
chapter presents a hybrid framework that permits the combination of two schemes
with different characteristics, in order to capture supersonic turbulent flows. A low-
dissipation scheme, adapted to the resolution of turbulent flows away froin shocks
is associated to an upwind method for discontinuity-capturing purpose. A detailed
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description of the two numerical schemes integrated in this framework is provided.
In particular, the shock-capturing scheme developed and implemented for the rescut
study is given in detail.

Chapter 4 presents the testing, validation and application of the presented LES
methodology to problems of shock / turbulence interactions. Direct siinulations of
shock / isotropic turbulence are presented first and compared to reference data. This
fundainental configuration is used to validate the numerical approacl, and to highlight
the importance of some closure terms in an a priori study of the closure model. This
study is then repeated from an LES perspective, showing the proper capture of the
turbulent evolution with the developed LES methodology. Application to a more
practical case of shiock / turbulent shear layer interaction is then considered. A high-
speed mixing layer is simulated with and without shocks interactions, highlighting
the impact of the shocks on the shear layer evolution, and the localized enhancement
of the mixing efficiency due to the turbulence amplification through the interaction.

In Chap. 5, the relevance of this approach is demonstrated by applying it to a
practical scramjet configuration. The numerical set-up reproduces the experimen-
tal study of a sonic jet in supersonic cross-flow, considered as a potential injection
method in scramjet designs. Results show a good capture of the physical processes
and demonstrate the applicability of the proposed hybrid LES approach to practical
supersonic flow modeling and design problems. The influence of the comnpressible
closure on the flow features is reported. Furthermore, the time-accurate resolution of
this interaction permits a capture of the flow dynamics and an identification of the
timc-averaged and instantaneous vortical structures is presented.

Chapter 6 closes this report by summarizing the different developments performed
in this work, highlighting their relevance and range of applicability, and finally closing
with a few recomnmendations for future work.
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CHAPTER I1

GOVERNING EQUATIONS AND MODELING

In the present chapter, the governing equations for LES of compressible turbulent
flows and the closure strategy developed for this study are presented. First, the more
general Navier-Stokes equations are described. The filtering operation is presented
next, the LES equations are obtained and the unclosed terms identified. Finally, the
model used to evaluate these subgrid terms is presented.

2.1 The Navier-Stokes Equations

The Navier-Stokes equations can be used to entirely describe any compressible tur-
bulent flow, in the continuum regime, and in the absence of external forces, MHD
effects, etc. These equations express the conservation of mass, momentum, energy
and species densities, and read:

= %p;i -0 (21)

Pt 1 oo o + Py = ] =0 22
o+ P =) =0 o)
af;fk + ai [oYi (wi+ Vig)] =0 k=1,., N, (2.4)

Here, p is the density, (u;)i=123 is the velocity vector in Cartesian coordinates, P is
the pressure, and Y} is the mass fraction for species k. Also, N, represents the total
number of species in the flow. The total energy is noted E, and 7;;, ¢; and V; are
the stress tensor, the heat flux vector and the species diffusion velocity respectively.
The total energy is the suin of internal energy (e) and kinetic energy:

1
E=e+§ukuk, (2.5)

where the internal energy is the sum of the contributions from all species:

N,
e = Z Ykek (26)
k=1

wliere e corresponds to the k — th species sensible energy.

This systemn of equations remains unclosed until an equation of state (EOS) is
defined to relate the thermodynainics variables together. Furthermore, expressions
for the stress tensor, the heat flux and the species diffusion velocity are required.
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e Equation Of State

It is assumed in the present study that the gases under consideration obey to the
perfect gas EOS. Introducing the temperature 7', this EOS can be expressed as:

P =pRT (2.7)

Here, R is the universal gas coustant per unit mass. With R, the universal gas
constant per mole, R is given by:

=R

(2.8)

where MW, is the molar weight of the k — th species. With this EOS, it can be
shown that the internal energy is a function of the temperature only, so that the
k — th species sensible energy is expressed as:

i b
oy = i) / Cox(T)dT' (2.9)
To

where C, +(T') is the specific heat at constant volume for the k — th species and € is
the reference energy evaluated at a reference temperature 7. Let us also define, for
convenience, the enthalpy as h = e + P/p. The sensible enthalpy of a given species k
can then be written as:

i
hk = hg +/ Cp,k(Tl)dTl (2.10)
To

where C, «(T) is the specific ieat at constant pressure for the k& — th species and is
related to C, x(T):

R.
MW,

If the specific heats are assumed independent of tenmperature, a calorically perfect gas
(CPG) is considered, and it is customary in this case to define the ratio of specific
heats ~ as:

Cpu(T) = Con(T) + (2.11)

The EOS is then fully defined with Eqn. 2.11 and 2.12. This closure is appropri-
ate to fundamental studies or simulations of practical flows with low temperatures
and/or flows with small temperature variations. However, when higher variations
in the temperature field are expected, one must resort to a more advance EOS. A
thermally perfect gas (TPG) has temperature-dependent specific heats, and is well
adapted to the simulations of practical flows under inoderate conditions of pressure
and temperature, that is, away from the critical thermodynaiics condition. In the
present study, despite the presence of strong compressive waves, the physical cou-
ditions are far from the critical points and the conditions of validity of the perfect
gas EOS are satisfied. The specific heats temperature dependence are obtained from
experimental measurements and curve-fitting (Gordon and McBride [1994]).
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e Definition of the stress tensor

The fluids simulated here are assumed to be Newtonian: the stresses are propor-
tional to the local rate of strain. Mathematically, this is expressed as:

_ au,- Buj auk
Ty = W <(9:sz + (9_x,> + A a—xk 6,-]' (213)

where y is the viscosity coeflicient, assumed to be a function of temperature only.
Again this assumption is acceptable for the pressure and temperature ranges con-
sidered in the present study. For gases, the viscosity is an increasing function of
temperature, and different models exist to describe this dependence (White [1991]).
Sutherland’s law for the viscosity is given by:

T\*? T,+S5
M= Ho (ﬁ) T+S' (2.14)

where 119, Ty are species-specific reference values and S a constant. The dependence
Is sometimes given as a power-law function,

p—— (,_,5,) (2.15)

wliere the exponent n depends on the fluid composition, but usually takes values close
to 0.7.

The remaining constant in Equ. 2.13, A, is the bulk viscosity. Following Stokes’
hypothesis, it is assumed that the stress tensor is traceless, so that the bulk viscosity
is related to p as A = —2/3 u. Finally, the stress terms are given by

1
Tij = 24 (Si' = §5kk5i]‘> (2.16)
where S;; is the rate of strain tensor:
1 [(Ou; Ou;
S," —t L g g
iT 3 (axj + ax,) 2Ll

e Definition of the heat flux vector

The lieat flux vector has contributions from the thermal conduction and from the
flux of sensible enthalpy due to species diffusion. Fourier’s law is used to relate the
thermal conduction to the local temperature gradient. The expression for the heat
flux vector is:

4 = —K

N,
YihiV; 2.1
oz, -t PZ i Vi k (2.18)

For the range of conditions considered in this study, the thermal conductivity «, is
also a function of the temperature only. Correlations of the type of Sutherland’s law
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or of the power law dependence can be used. A Prandtl number (Pr) can be used to
relate x to p. The Prandtl number is defined as:
pr = S (2.19)

K

and is assuined coustant in the present study (Pr = 0.72).
e Definition of the species diffusion velocities

The species diffusion velocities, V; i, are modeled using a Fickan diffusion approx-
imation. This closure reads:

Dk 8Yk
—7k 0z;
The diffusion coeflicient D). depends on species k, the other species in the environinent
and the static pressure and temperature. Here, these coeflicients are obtained from
a constant Lewis number (Le) assumption, where the Lewis number is:

Vik =

(2.20)

K

Le =
pCpDk

@2

With the equation of state and the expressions for the stress tensor, the heat flux
vector and the species diffusion velocity, the Navier-Stokes equations are closed and
can be solved ezactly through Direct Numerical Simulation (DNS). In this context,
accurate simulations of turbulent processes should capture all the relevant scales of
niotion, from the largest, scaling with the outer dimensions of the configuration,
down to the smallest scales of the flow, of the order of the Kolmogorov scale. This
separation of scales ilcreases as the Reynolds number is increased. As a consequence,
the discretization requirements grow rapidly as the simmulated Reynolds numiber is
increased. As an illustration, Kaneda et al. [2003] performed a simulation of a Rey =
1200 isotropic turbulent field, which required a resolution of 4096° grid points. This
Reynolds nummber, probably about as high as we can get today through DNS, is still
far from what is reached in full-scale configurations. DNS does 1ot appear as a viable
solution to the current industrial and/or practical needs in computer simulations of
fluid flows.

2.2 Governing Equations for LES

The separation of scales in high-Reynolds number turbulent flows, and the univer-
sality of the small scales, as first envisioned by Kolmogorov, are widely accepted
characteristics of a turbulent flow. The Large Eddy Simulation equations are ob-
tained by spatially filtering the Navier-Stokes equations, in order to separate the
large, geometry-dependent scales from the small, universal scales. LES methods rely
on the assumption that the universal small scales and their interaction with the large
scales can be modeled, whereas the large energy containing scales need to be explic-
itly solved. In the present section, a spatial filter is applied to the Navier Stokes
equations, and the Favré-filtered LES equations are presented. All subgrid, unclosed
terms are explicitly identified.
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2.2.1 Spatial Filtering and Favré Averaging

The separation between large and small scales is obtained by applying a spatial filter
to the governing equations. Let G(x,x’) be the mathematical description of the filter
Kernel used for this operation, where x and x’ are position vectors. Then, variable f
is filtered into f as:

fx.t) = /nf(x’,t) G(x,x)d® x' (2.22)

where (1 represents the entire domain. In the current implementation, the filter used
is a top-hat filter kernel. Practically, G is the product of three one-dimensional filters:

3
G(x —x) = Hgi(xi — ;) (2.23)

where x; is the i — th computational coordinate, and g;’s are one-dimensional top-hat
filters that read:

(2.24)

) ; A
) =~ |zi—zi <

Ti—xy)=qQ A ise
9:(z ;) { 0: otherwise

A,; is the local one-dimensional filter size in the i—direction. The global filter size
A is obtained from the one-dimensional filter sizes as A = (A;A;A3)"*. For the
current LES methodology, the one-dimensional filter sizes are based on the local grid
spacings, and A is a measure of the local grid cell size.

Let us also define the mass-weighted filtered variable, or Favré-filtered variable.
This alternate averaging procedure is often performed for the study of compressible
flows as it significantly reduces the number of unclosed terms that result from the
filtering operation, and is adopted in the present study. f is the Favré-filtered variable
f defined by:

f= (2.25)

~ 2

where p is the local fluid deusity.

2.2.2 Filtering the Navier-Stokes Equations

The spatial filter described above can be reduced to a function of x — X/, the relative
position i space, and can thus commute with both temnporal and spatial partial
derivatives. The application of the fiiter to the Navier-Stokes equations is hereafter
presented.

e Mass conservation

The equation for mass conservation reads:

Jp  Opy;

=0 (2.26)

ot 8x1- -




Using the commutativity of the filter with the derivatives, the filtered continuity
equation reads:

o , opm

=0 LT
Finally, in terms of Favré-filtered variables, this equation reduces to:
dp | Opu;
- =0 2.28
o or, (2.28)

e Moinentum conservation

The governing equation for the momentum is obtained by following the same steps
as for the continuity equation: the exact equation is filtered, and the commutativity of
the filter with the derivatives is called. Finally, Favré-filtering is used. The governing
equation for momentum reads:

dpu; , 0

a5 T 7 [Pt + Péij = 75] =0 (2.29)
This relation is strictly equivalent to the following:
aﬁ&; a — o~ D 898 =
ot + 8_;1:] [pulu + P(sij S Tijg - Tij] =0 (230)

so that the convective term in the equation above can be treated fromn the resolved
field, and the subgrid stress 7.7° = p(u;u; — @;u;) is introduced. 7,7° is related to the
correlation of the fluctuating velocities u; and u; at scales smaller than the filtering
dimension (the local grid size). Hence, such terms are called subgrid terins and

denoted using an sgs superscript.
e Energy conservation

The exact total energy equation is filtered into:

BE v [p (wB) + P+ 5 -] =0 (231

which again is strictly equal to:

9pE 0

e PiE+ 5P+ — @+ H)? + 03| =0 (2.32)

where the terms H?* and 0% correspond to H;** =p (E’IZ = £~7u~]) + (u; P - Puy),

920 = T — 1T
and 07" = — (T — wTy)-

e Species density conservation
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Filtering the equations that govern the species conservation leads to the following
relations:

= |P | Yaui + ViV )]:0 2.33
ot Bz [,0( kUi + YieVig ( )
Re-arrangement of those terms leads to:

a?fk = ai [ﬁ ()7“7 N ﬂﬂ) R = 95,75} =0 (2.34)

where the terms noted Y;¥” and 6/ correspond to Y;¥* = p (1;:)7; - 1'Z,~)7k>, and
6% =P (Vi,kyk = Vi,kylc>
e Equation of state

The perfect gas EOS is used throughout this study. Filtering this equation leads

to: o
=S (2.35)
= pRT +pR,T*?
where T79° is the sum of the subgrid species-temperature correlatious.
YT = Y,T
T E = _ 2.36
o (2.36)

2.3 Closure Model for the LES Equations

From the initial conditions and the time integration of Equ. 2.28, 2.30, 2.32 and 2.34,
the variables p, u;, E and Yj are known. The filtered continuity equation is fully
closed. The other governing equations are unclosed and all the subgrid and filter
terms in these equations require some evaluations or modeling. The total energy
being the sum of a kinetic and an internal contribution, the Favré averaged total
energy E is given by:

E = e+ luwm
= 4yl + 5 (weuk — del) (2.37)

= T+ Laa + koo

Here, k°9° denotes the un-resolved, or subgrid part of the kinetic energy. The filtered
internal energy is given by:

Ns Ns T Ns
e=) N+ % L Cyx(T)dT + > B (2.38)
k=1 k=1 0 k=1

Provided that E}?" is evaluated, the Favré filtered temperature can be obtained.
The filtered stress tensor in the momentum equation is computed in analogy to the
unfiltered Navier-Stokes equations as follows:

i 1~
T = 2u(T) (Sij - gSkk5ij> (2.39)
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where S’Z represents the rate of filtered strain. Similarly, the filtered heat flux vector
and the filtered species diffusion velocity are comnputed as:

~ OT 4 i $gs
q_j == —K,(T):E— + ﬁ E Ykhk(T)‘/i,k = ng' (240)
)
~ DY,
Vip=—— 2.41
-2 @)

All the subgrid-scale terms, denoted with a sgs superscript, are unclosed, and
therefore, require specific modeling. These terms are:

= p (W — @) (242)
H?" =5 (Bu; - B&) + (P - &P) (2.43)
0" = (W75 — u;T;) (244)
Y =7 (wh - &%) (245)
0% =P (Vi,kyk = ‘deﬂ) (2.46)
qzis =p (fmz',k - Ek?k"/-;c) (2.47)

Ne
T =Y "(MT - YiT)/MW; (2.48)

k=1

Ey* = Yier(T) — Yer(T) (249)
It should be noted that, in the expressions for 6;%’, ¢;%’ and E;?°, the repeated index

k does not imply summation. The closure strategy to model the subgrid terms is
presented next.

An eddy-viscosity type closure is adopted in this study. The eddy viscosity, v;, is
evaluated using a cliaracteristic length-scale, provided by the local grid size A, and a
characteristic subgrid velocity, obtained from the subgrid kinetic energy £°9°, so that
v, = ¢,AVk9°. The unclosed terms in the momentum equation, the subgrid stresses

79° are then closed as:

ij 2 €
j

. = 2
Ty = —2pu | Sij = = Swby; | + k%8, (2.50)
J 3 J 3 J

The two unclosed terms in the energy equation, H?* and 079" are modeled together:

ksgs 7= T
VOB o (2.51)

H‘.Sgg+g‘?gs=—_y+ %
: : (Pr+ 1) Ox; Pry .Omg =
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The subgrid diffusion of species mass fractions, Yif,fs, is also 1modeled using an eddy-
diffusivity assumption, as: N

sgs __ _ﬁ_’jt_a)/k

L SCt 8xi
The diffusions due to subgrid fluctuations in species diffusion velocity, 67" and ¢;7’,
are neglected in the present study. All simulations in this study are non-reactive,
aud the impact of these diffusion terms is expected to be small. Also, T%9* and E;*
are usually found to be very small (Fureby and Moller [1995], Veynante and Poinsot
[1996]), and will be neglected in the present study as well. The determination of the
local value of the subgrid kinetic energy k°9° is needed for the evaluation of the eddy
viscosity, and is described next.

(2.52)

2.3.1 Derivation of the k%* Closure Model

The subgrid kinetic energy is obtained using a transport equation model. The exact
governing equation for the subgrid kinetic energy is hereafter derived, and the different
contributions to the evolution of k*9° are identified.
e [iltering of the Total Kinetic Energy Equation
The non-filtered equation for the kinetic energy is obtained from the Navier-Stokes
equations by multiplying the i— momentum equation by u;:
Opu; Opuiu; OP;; o7y
Uu; + u; + u; —u—2 =90 2.53)
ot ‘ 8xj ‘ 8xj 6:5]- ( B )

Applying the chain rule, and calling the mass conservation Eqn. 2.1, it is straightfor-
ward to show that:

apK 8pu]K aP(S,-J- aTij
ot i Oz; it Oz _uiaxj

where K = 1/2(u;u;) is the kinetic energy per unit mass. Filtering the previous

=0 (2.54)

equation, and using Favré-filtering, the governing equation for K reads:

pK dpu,K ~ 0Ps;  om,
i — Uy = 2%
o a; +u oz, Uip— 0 (2.55)

O,
e Deriving the Resolved Kinetic Energy Equation

The governing equation for the resolved kinetic energy is obtained similarly. Mul-
tiplying tle filtered momenturn equation, Eqn. 2.30, by the filtered velocity u;, gives:

_Odpu; _Opusu; .. O
Uu; Lo * + 4 L T
ot axj axj
Again, using chain rules and the filtered equation for mass conservation, Eqn. 2.28,
the equation for K,., = $d;d; is reached:

[Po; + 79 —75] =0 (2.56)

aﬁk,.es aﬁﬁ‘"kres ~ 0 Sas _
ot & aij o} UiTj [Féij Fat — 'rij] =0 (2.57)

0
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e Deriving the Subgrid Kinetic Energy Equation

The un-resolved kinetic energy, k*%*, is the subgrid part of the filtered total kinetic
energy: k%9 = K — K,,. Subtracting Eqn. 2.57 from Eqn. 2.55 gives:

.$g8 agp m—?kras BPJ. o aﬁts. a 1 ~ JT;;
PR AT + (u -t ) - (wEd — gt
7

at Ox; \ alrfgfj v Ox; ? Ox; (258)
- g2 =0
Tj
The sccond term in this last equation can be re-arranged into:
85 (’l:[l( - @Rres> a—ﬂ“ksgs 8/_) (12;7;’ - L’I:;I?)
=4 (2.59)

65 Jm; ox;

so that the convective term for k*9° is obtained. Chain rules are used to re-arrange
the contributions that involve the pressure and the stress tensor, and the final form
of the k%9° equation reads:

z'p' ksgs +

& e
ot (ﬁ UikSgs) = ﬂsgs +p(lksg,q + Pksga - Dkﬁgs (260)

3:5,-

where the different contributions to the k** evolution equation have been re-cast:
Ty+o- represents the diffusion of k*9%; pd,.,. is the pressure dilatation correlation, and
Pisgs and Dysgs are the production and dissipation of £°9° respectively. Their exact
expressions are given by:
Tow = =2 (K w — 5 R — yri?") + (P — &P) — (G — 5 75
ko = =5 ((p w — p Ky — Uyr") + (WP — 4P) — (T — 1 T,-]-)> (2:61)

sgs OU;
Prags = =17 8_x: (2.63)
ou, ou;
Dksgs = (Tl"—l = T—l> (264)
g 8.73]' 2 8.73]'

This equation requires modeling since diffusion, dissipation and pressure-dilatation
correlation cannot be readily evaluated. The diffusion due to subgrid fluctuations
in kinetic energy, subgrid fluctuations in viscous stress, and subgrid fluctuations in
pressure all contribute to the global diffusion of £°9* and each require proper modeling.
The first contribution (often referred to as the triple velocity correlation) and the
second are modeled using a gradient diffusion model. First, the subgrid stress work

is modeled by:
0—(wmy —wity) 0 ( Ok
311- (9:5,- !

(2.65)

(9:5,-




Second, the subgrid transport of subgrid kinetic energy is modeled by:

(2.66)

0 (ﬁﬂl = :51?&1 = ﬂjrfjg’) o " Ok398
—— Ay

ox Ox;

where og is a modcl constant.

The diffusion due to subgrid pressure fluctuations is often neglected in LES of
flow where compressibility effects are small. This approximation might be acceptable
in low Mach number flows. However, as will be seen later, this contribution is fun-
damental in the context of shock / turbulence interactions, and requires modeling.
Following the eddy-viscosity formulation used in the present study, this terni is closed
as: "

%P — G = pGaT — 5T) = ~22 29T (2.67)
op 8.131'

Noting that this diffusion term is directly related to the subgrid diffusion of enthalpy
in the governing equation for the energy conservation, the closure coefficient op is
taken to be the same, that is, the turbulent Prandtl number Pr;. The global model
for the diffusion of subgrid kinetic energy reads:

0 (v, 0k  puRoT
Ozx; O # 0zx; Pr, Ox;

7;59:& == (268)

For high Reynolds nuinber flows, the dissipation of turbulent kinetic cnergy occurs
mostly at the sinall scales. Its expression is universal and depends on the energy
transfer rate within the inertial range. In compressible flows, however, the dissipation
of turbulent kinetic energy has contributions from the solenoidal and the dilatational
fields. Most models for the compressible part of the dissipation evaluate this term as
a function of the solenoidal contribution, with a dependence on the turbulent Mach
number, as revicwed earlier. The analytical work of Ristorcelli [1997] and Fauchet and
Bertoglio {1998] showcd that the actual dependence is on M}', which remains small
for most flows of practical concern. Furthermore, the relation between solenoidal
and compressible dissipation scales as the inverse of the Reynolds number. The
contribution of thc compressible part is then very small compared to the solenoidal
part, and is therefore neglected in the present model. By analogy with the Kolinogorov
concept of energy cascade, and assuming that the cutoff scale lies within the inertial
range, the dissipation of subgrid kinetic energy is assumed to be entirely detcrinined
by the characteristic turbulent velocity scale (based on k*9°) and the characteristic
length-scale (the local grid cell size), so that:

Dysss = P (k°9°)2 /A (2.69)

The last unclosed term in the governing equation for £°9° is the pressure dilatation
correlation. Here again, this term is often neglected in simulations where compress-
ibility is not expected to play a major role, but does require a propcr modeling in the
context of high-speed flow simulations. The study of Ristorcelli [1997] shows that this

25




term varies with M2, and depends on the departure from equilibrium, that is, the dif-
ference between production and dissipation of turbulent energy. The present closure
formulation uses this scaling analysis to model the pressure dilatation correlation as:

pSk

ksgs

pdksg.g = apdA{:gS2 ( ) (Pkags = Dksg-.) (270)

where M;%*? is the turbulent Mach number based on k*¢*, and S is related to the
total strain rate:

~ T =5
Ca= ES“S"J' (2.71)

The final form of the evolution equation for the subgrid kinetic energy used here
is finally obtained as:

op D u; k%9 = ok*9° | puR oT
= (1 d ade:gﬁ (_ngags)2> (TS:‘”@J'. P k.‘gi)ii,’2)

Dkags i] 81; A
(2.72)

2.3.2 Evaluation of the Model Coefficients
2.8.2.1 Nominal Values of the Closure Coefficients

The closure for the LES equation and for the k%9 equation is now complete, and
uses six closure coefficients, (c,,ce, ok, Pry, Se, 0p9). Nominal values for ¢, and ¢,
cail be obtained from theoretical considerations. The dissipation coeflicient can be
determined from an assumed model turbulent spectrum. The Pao energy spectrum
(Pao [1965]) is a good approximation for the energy spectral distribution at high
Reynolds numbers of isotropic flows:

E(k) = acgn'gexp(—g—a(m;)%) (2.73)

where a is the Kolmogorov constant (a = 1.5), n the Kolmogorov scale and € the
total dissipation. This model spectruin contains both inertial and dissipative ranges.
Cousidering . the cut-off wavenumber, given by s, = 7/A (see, e.g. Pope [2000]),
the subgrid kinetic energy is:

@l

ksg“‘:/ acgn_gexp(—ga(ﬁn) )d & (2.74)

Assuming that the cutoft length-scale is well within the inertial, far from the dissi-
pative scales, so that A/ >> 1, or in other form, k. << 1, the exponential term
remains very close to 1, and k*9* is approximated as:

o0 2 3/2 2/3
A =/ acik~3dk = (_ﬁ) - (2575)
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so that the total dissipation is related to the subgrid kinetic energy:

9 3/2 ksgs 3/2
- (£> (ksgs)S/2,{C _ 0'931(T) (2.76)

The spectrum of dissipation is obtained from the energy spectrum as D(x) = 2vk?E(k).
Its integration between k. and oo gives €xsgs:

o 3 3
£ = 2u/ GC§H—§K2€l‘p(—§a(K7l)§)d B =€ ex:p(—ﬁa(fccn)%) (2.77)

Again, the exponential term is assumed to be fairly close to 1, so that the dissipation
of subgrid kinetic energy is given by ¢*9° x~ ¢ = 0.931@7%.

Spectral closure theories (Kraichnan [1976]) can be used to evaluate the eddy
viscosity formulation as v, = 0.441a~%2,/E(k.)x;!. With the Pao energy spectrum
and the expression for the total dissipation obtained earlier, one gets:

031 (ks9s)3/2 2/3 8 .
woznyfa(BEENT b Sy o

The exponential factor is again neglected, and since x, = n/A, the eddy viscosity can

be evaluated:
0 = 0.261\/7::05931273 VESA
= 0.067VEk9sA

This evaluation of the closure coefhicients leads to ¢, = 0.067 and ¢, = 0.931. This
constant coefficients closure has been frequently used, and shows good results in many
cases. It shiould be noted however that these coefficients have been evaluated for a
given assumed spectrunl, with the assumption of a very high Reynolds number flow.
In particular, Lesieur and Métais [1996] discuss the scalings for spectral closures,
and point out that a spectrally averaged eddy viscosity along with the constraint of
subgrid-scale kinetic energy dissipation being equal to ¢ could lead to an expression for
the eddy viscosity as vy = 2/301"3/2 E(k:)x71. ¢, would then be evaluated as 0.101,
highlighting some of the uncertainties in the determination of the closure coefficient
for subgrid terins in physical space.

(2.79)

2.3.2.2  Dynamic Evaluation of the Closure Coefficients

In general, it can be expected that the values for the closure coefficients depend on
the configuration, and vary in both space and time. They should then be computec
as a part of the solution. The k%9 closure model presented here has been extended
in order to evaluate dynamically these coefficients as a function of the local flow
properties. This method, the localized Dynamic k*9° Model (LDKM) was originally
developed for the simulation of incompressible flows by Kim and Menon [1995]. The
forinulation of the dynamic model is hereafter presented.

The concept of dynamic modeling, introduced by Germano et al. [1990], is based
on an explicit filtering of the exact filtered equations and of the model formulation,
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Figure 2.1: Representation of the subgrid and sub-testscale regions in a model
turbulent energy spectrum, and modeling assumptions for the dynamic procedure of
Germano et al. [1990].

and is schematically illustrated in Fig. 2.1. Noting fthe explicitly filtered variable
f, and dropping the density for clarity, the filtered subgrid stress leads to:

=%y = ==
T = Ul — Uil (2.80)
which is re-arranged into:
T Ee maN fem sR
T = <ulu] - ulu]> - <ulu] ulu]> (2.81)

T:’;r" Lij
The first term on the right hand side of this equation resembles a subgrid stress, but
for a filter at a new level, hereafter referred to as sub-testscale level, and 'rf}s is the
sub-testscale stress. The second term is called the Leonard stress, and is directly

computable from the resolved field. Assuming that the subgrid stress is modeled as

T = f <§,-j,—A_>, then !

A e wan e o
7 (8,8) = (@w, - &8 - (78, - @) (2.82)

Furthermore, modeling the sub-testscale stress with the same closure approach, one

—

~
IThe ( ) symbol is used here to denote the application of the test-filter, as the hat symbol
cannot be sufficiently extended to cover the whole expression.
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Figure 2.2: Representation of the subgrid and testscale regions in a model turbulent
energy spectrum, and modeling assuniptions for the LDKM.

gets: o
= — o~~~
b <§ij7K) =f <§ij,l&> = (17117] = 17117]) (2.83)

The closure coefficient that appears in the function f(.,.) can be obtained, assum-
ing it is constant within the explicit filtering. This method was first applied to the
dynamic Smagorinsky model (DSM), but the method was found ill-posed, as a di-
vision with an un-bounded denominator was involved in the final expression for the
Smagorinsky coefficient. Stabilization of this model required averaging over the hLo-
mogeneous directions of the flow. This dynamic model showed improved predictions
compared to the constant coefficients Smagorinsky model. Extension of this method
to other closure models has been performed. It should be noted that a Dynainic k*9¢
Model (DKM) has been developed using the same principle as in the DSM, but again,
the method for computing the closure coefficient in the momentum equation was still
performing a division with a denominator that could reach zero. This issue was again
circumvented by averaging the coefficient along directions of homogeneity.

The LDKM 1method has been developed in a truly localized fashion, without any
need for averaging. Rather than cousidering that the inodel used for 77° could be
extended to the modeling of 7;5*, a similarity between the testscale Leonard stress L,;
and 7] is assumed, as illustrated in Fig. 2.2. It should be noted that such a relation
has been experimentally observed and reported by Liu et al. [1994a]. Considering the
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Favre averaged testscale Leonard stress (the density is now included for completeness):

;=52 - (284)
p p P
The testscale resolved kinetic energy is then given by the trace of the Leonard stress
tensor: N TS
e R T (2.85)
2p 2\ p P P

The similarity in form between Leonard stress at the testscale level and subgrid stress
tensor can then be expressed mathematically as:

— e

~~ [3S; 1pSw 1,
Ly = —2c,Vi=pA | 228 _ 5"_%51,- + Ludis (2.86)
p P
or, identically:
o (= 1= 2
Lij = =2c, VKA (7351']' = gﬁskkéij) + gﬁkt“‘éij (2.87)

—

L;;, k**** and ﬁgij can be computed from the resolved fields of velocity and density.
¢, remains the only unknown in this equation. The closure coefficient is however
over-specified, as six independent equations are obtained from this relation. The
redundancy is removed using the least-square method proposed by Lilly [1992]. The
testscale stress tensor model error tensor Ej; is defined as:

~ A 5= 1
Eij = ['ij + 20,,\/ ktest A (ﬁSij = §ﬁ5kk6ij) == §['kk62] (288)

This tensor represents the differences between exact subtest-scale stresses and mod-
eled stresses. A minimization of the r.m.s. error is enforced. Mathematically, this
cousists in ensuring that the derivative of E;; E;; with respect to the model coefficient
¢, 1s zero. This expression reads:

OF;;E;;
8_6,,1 = 4Mij['2j + SCuMijM,'j =0 (289)
where: ;
[’;j = ['ij = §‘Ckk(5ij (290)
and
PR v
Finally, the expression for ¢, is obtained:
c, = _M (2.92)
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The evaluation of the coefficient ¢, requires a division, but the denominator is a well-
defined non-zero quantity. Consequently, this dynamic formulation is stable, and can
be applied in a truly localized manner. It is also worth noting that, even though
M,;; appears at both numerator and denominator, the tensorial notation M;;M,;
implies a distributive multiplication, hence it is not possible to cancel M;; out of the
numerator and denominator. It is also worth noting that an evaluation of the model
coefficient based on the production of k%% from exact and modeled Leonard stresses
leads to the same formulation of the closure coefficient. The two production terms
are:

— —

. 5S .
chter P28 = o D24 (2.93)
p p
which give:
= = == 1= 1 ==

Li;pSiy = <_QCUV ktestA (551'1' - ’3'ﬁ kk5ij) i §£kk5i]‘) PSi; (2.94)

So that: .

iy
C, = % (295)

—2M;;pSy;

Noting that both Qj, appearing in the numerator, and M;; in the denominator

are traceless, 1t is strictly equivalent to replace ﬁS’T,-;- in the previous expression by

—

ﬁ.é:; - ﬁé;céu Then,

Li; (551']' = %ﬁskkfsij)
(2.96)

CV = — —
—2M,; (ﬁsij - %ﬁSkkéi]‘)
Multiplying both numerator and denominator by v/ k‘“‘ﬁ, one gets exactly the rela-
tion: ,
- MLy
In order to determine the closure coefficient for the dissipation of k%9 the gov-

erning equation for k' is used. Its derivation is very similar to the derivation of the
k*9* governing equation, and reads:

(2.97)

Cy =

0 : 0 (==
a-p_ kte.gt + a_x (ﬁuik‘t“t) = ﬂtaat + I)dktp_yt + Pktr‘:t T Dktest (298)

where the expression for the diffusion, pressure-dilatation correlation, production
and dissipation at the testscale level are fully expressed as functions of the resolved
variables and of the subgrid stresses only. In particular, the production of kst is

Priese = —[Z,-]-ﬁ:S'\,-/j /%, and its dissipation is given by:

—_— PE o
DI TR et - G, 1Y
Dktest = (7‘,']- - Tij‘q )afL‘] - (Tij - Tiij ) % pTJ (299)
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Under the similarity assumption, the dissipation of £*** is modeled with the same
formulation as the dissipation of k®9%, Dysest = pce(k¥*t)3/2/ A, where again, only the
closure coeflicient remains unknown. With the following notation:

= e il
Nij =2 (Sij — gskkéij> (2.100)
the difference between filtered and subgrid stresses is given by:
— sgs S 2_ sgs
Tij — Tijg = peffXij — gﬂk 85 (2.101)

where p.rr = p+ pue. pesys is assumed to be constant over the width of the explicit
filter. The expression for the dissipation coefficient c, is given by:

A Hess ce Bl & 00 o[ "o  ——ou
e = f\ 21—] = E‘i' d =l = ksgs = k"gs
6 ’ﬁ‘(ktest)% < D |:p I Ox; J p@asi 3 2 oxy, & Oxy

(2.102)

In comnpressible flows, the closure for the energy equation plays a fundamental
role, as strong variations in the energy / temperature fields are associated with the
compressibility of the flow. The turbulent Prandtl number, used to close the energy
equation, has been shown in experimental and DNS studies to vary spatially and
temporally for a given turbulent flow. Furthermore, the statistical average of Pr,
has been found to be flow-dependent. It is generally found that Pr; remains of the
order of unity. Chambers et al. [1985] report an average turbulent Prandt] number
Pry; = 0.4 in an experimental study of turbulent mixing layers, with spatial variations
between 0.3 and 0.6. Using direct simulations of decaying incompressible isotropic
turbulence, Moin et al. [1991] showed that Pr; could be assumed approximately
constant, Pr, = 0.4, but that compressibility could significantly iimpact the theoretical
value of this closure coefficient which varies between 0.25 and 0.6. Also, Pham et al.
[2007] studied the evolution of a turbulent thermal plume using both DNS and LES,
and showed variations of Pr; between 0.2 and 0.7. It appears clearly from these exact
evaluations of Pr; that assuming a constant value for this closure model can be a
rather limiting approach.

In the present work, the dynamic evaluation of the closure coefficients is extended
to the local computation of the turbulent Prandtl number, using the same similarity
assumptions as for the other closure coefficients. At the testscale level, the expression
for the temnperature and velocity correlation, n;, can be computed exactly from the
resolved field.

paT  pu pl
= - (2.103)
p p P

Using the same modeling assumption as in the subgrid terni case, the testscale velocity
temnperature correlation is given by:

- == Pa— (2.104)




Pr; is the only unknown of this system of three independent equations. Agaiu, the
over-specification is solved using a least-square method to miniinize the error vector.
Solving for the inverse of the Prandtl number, the following expression is obtained:

din;
=—— 2.105
l/Prt didi ( 100)
where e
NEEtA 9T
i 2 (2.106)
ﬁ 3:c,~

The formulation of the model for the pressure-dilatation correlation is given in
Eqn. 2.70. Again, the similarity assumption is made between subgrid and testscale
pressure dilatation in order to evaluate the closure coefficient apg. pdgees: can be
expressed as:

“ou, P _ou
dptest = P— — = p— 2.107
Pl = oz, ~ 35 Por, (2.107)
The mmodel associated with this expression reads:
= 2
—Sktest
piyeene = apgM=t? | £ (Bl — Dy (2.108)
Dktcst
A single scalar expression is obtained for the closure coefficient:
P& P55
= L O (2.109)
st2 [ BSktest
]\/[tte t (%) (Pktest = Dktcst)

It should be noted that the denominator depends on the departure from equilibrium at
the testscale level. If the production of k**t balances the dissipation, the formulation
is found ill-posed. The pressure dilatation correlation is expected to be relatively sinall
in most case, reaching 10% of the dissipation in non-equilibriuin flow configurations.
This is used to bound the value of a,; and prevent divergent values of the modeled
pressure-dilatation correlation.

The other coefficients g, and Sc; could also be evaluated dynamically, if needed
using a siinilar strategy. However, the impact of the oy is small compared to other
terms in the governing equation for k%°, and is therefore, assumed to be constant
(ox = 1). The turbulent Schmidt number is taken to be equal to 0.9. This latter
approximation is acceptable for simulations where species play a passive role.

2.3.3 Realizability Conditions

Vreman et al. [1994] showed that if a positive semi-definite filter, such as the top-hat
filter, is used within an LES formulation, the subgrid stresses have to be positive semi-
definite. These conditions, referred to as the realizability constraints, were found to
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be satisfied by the LDKM formulation most of the time during the computation of
well resolved turbulence (Nelson and Menon [1998]). However, the strong and very
localized variations induced by shocks can make this property difficult to satisfy over
certain regions of the flow. An explicit enforcement of the realizability constraints is
performed in this study. The realizability constraint is given by:

T T Tas 2 0
5 ? < miTys
3P < T TE (2.110)
g < nlnY
det [77"] > 0.

With the closure adopted in the present study, the three interiediate relations are
re-arranged to show:

3gs2 5982 sgs2 898 _sgs 393 _8gs 3gs _sgs
T2 +Ti3 + T3 STy Ta2 + 711 T33 + Tag T33 (2.111)
Noting that 7,/° = —2pv,E; + 2/3pk*9°4;5, one can re-write the previous relation as:

(27)14)2(5%2 + i%{} T i%f}) S (Qﬁljt)Q(iuin + il},is‘g —|;§22§33)
— %(ﬁkSQSQﬁVt)(Ell + 222 + 233) (2112)
+ 3%_,52]\78982

The trace of the tensor i‘,-j is 0. Hence, the second terin on the right hand side of
the equation given above can be canceled out. The first term can be re-expressed as:

T o) — - = - 1 ~ ~ -
11222 + 1L + Ll = =(En + L2 + Ta3)° - E(Zf1 +¥3L,+ %) (2.113)

=0

[N N

The equation given above can then be formulated:
T R [ T i
()*(E + By + 235 + 5 (50 + 35, + 25)) < Sk (2.114)

Given that vy is given by v, = ¢, VEk*9*/A, one can get an upper bound for the ¢,

coeflicient as:
A /ksgs

¢, < m (2.115)

where S is the strain rate magnitude defined earlier. These constraints are explicitly
enforced everywhere.




CHAPTER III

COMPUTATIONAL METHODS

As reviewed earlier, the computational resolution of turbulence in high-speed flows is a
challenging task, as it requires a numerical scheme that combines a fine capture of the
turbulent structures in the flow with low inherent dissipation, and a shock-capturing
capability, to resolve all discontinuities in the flow as a part of the solution. In order
to allow for such simulations, a hybrid scheme is developed in the present study that
switches dynamically and locally between two numerical schemes in different regions
of the flow. The McCormack schemie will be first presented, and its extension to
fourth order spatial accuracy will be examnined. The shock capturing methodology
developed and implemented in the framework of this hybrid approach is described
afterwards. Finally, the smootliness sensor used to assess the numerical switch is
described.

3.1 Numerical Integration
3.1.1 Fimite Volume Method
The governing equations described in Chap. 2 can be written in the following forn:

oQ i OF; " Iy 5 OF,
at dx ay 0z

=5 (3.1)

where () is the vector of conserved state variables, F;, F, and F, represent the fluxes
in the x, y and z direction respectively. and the vector S contains all the source terius.
A finite volume approach is used in the current study ; the governing equations are
integrated over a control volume V' (a computational cell), deliniited by a surface %,

as follows:
oQ JOF: oF, OF.
b '} v ¢ 5 y 2 _ 7 i
/] & +///<az Tt 6z>‘” [ s w2

With Green’s theoremn, the previous relation is re-expressed as:

0 1 '
—Q+—f(FI g sl By o+ By Ml = 5 (3.3)
a vV Js

where () and S are averaged over the voluine of integration, F' over the cell interfaces,
and (ng,n,,n,) are the normalized Cartesian components of the elemental surface
nornial vector.

In the structured framework adopted liere, any computational cell of coordinates
(4,7, k) is delimited by 6 interfaces (X;),_, ¢ located at (i £1/2,7,k), (i,5 £ 1/2,k),

35




and (i, j, k £1/2). Noting more generally F; = Fyn, + F,n, + F,n, the eorresponding
fluxes evaluations, the increment in the cell-centered variable @ is computed as:

40 = -g S (R T)+Sdt (3.4)

I=1,..6

3.1.2 McCormack Time Integration

The time integration is performed using a two-stage Runge-Kutta method. As will
be presented later, the fluxes evaluation in the McCormaek method differ during the
two stages of the time-integration. For this reason, the two stages are often ealled
predictor and corrector, and their formulation is given by:

QW = QM4 d4QW (Predictor) 35
QMY = 1 [Q™ + QM +dQ™] (Corrector), i)
Here, dQ™ and dQ™ are the inerements in state variables, obtained as in Equ.
3.4, based on the variables Q™ and Q™) respeetively. This results in an explicit
methodology with second order accuracy in time. This time iuntegration, originally
eliosen as a part of the McCormack seheme, is applied to both the eentral and the
upwind schemes presented hereafter. The spatial accuracy of the overall scheme is
determined by the aceuracy in the evaluation of the fluxes at the cell interfaces. The
smooth flow solver will be presented first, for both second and fourth order spatial
aceuracies, followed by a description of the upwind shock-capturing flux computation.
As mentioned above, the seheme used here is explieit. The increments computed at
a given sub-iteration are based on the field at that sub-iteration. The superscripts in
Q"™ or Q™ are redundant, and are dropped in the following description of the sehemes
for clarity. Also, the numerical schemes hereafter described are used to evaluate the
fluxes at the interfaces. The flux at a given 7 + 1/2 interfaee is determined from: the
eell variables of varying i's, but for fixed j and k. In order to simplify the notations,
only the index corresponding the 7 loeation will be kept, j and k being implicitly fixed.
Furthermore, it should be noted that the extension of the computational operations
deseribed for the i-direction to the other two directions is straightforward, the indices
i, 7 and k being essentially interchangeable.

3.2 A Hybrid Scheme for Supersonic Turbulent
Flows

In order to evaluate the state variable incremient in Eqn. 3.4, the fluxes at the cell
interfaces must be evaluated. In order to capture both the discontinuities in the flow
and allow for the resolution of the turbulent features, a hybrid framework has been
developed. The flux evaluation is given by:

Firrz = Niv1pFle + (1= Aiviye) Fihpa (3.6)
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where F is the flux obtained using a low-dissipation scheme adapted to the resolution
of turbulent flows, presented in Sec. 3.3, whereas F* is evaluated from a shock-
capturing scheme, described in Sec. 3.4. Rather than blending the two schemes, the
current hybrid methodology switches between them. The switch variable A;i,/y is
then given as a Heaviside step function, according to an evaluation of the smoothness
of the local flow-field, used to determine which scheme is appropriate.

Several sensors can be found in the literature. In self-adjusting artificial diffusions,
an explicit diffusive term is integrated to the governing equations, and its strength is
dynamically computed from some characteristics of the flow variations. Harten and
Zwas [1972] suggested the following self-adjusting parameter for shock-capturing:

| i1 — ¢4l ]m
|

max; |41 — @;

biv12 =~ [ (3.7)
where £ and m are user-dependent constants, and ¢ a variable that characterizes
the discontinuity. The denominator captures the largest jump in the flow. These
coefhicients were found to strongly depend on the configuration, the presence and
strength of the shocks within the simulation. More recently, the Jameson artificial
dissipation (Jameson and Baker [1983]) was designed to stabilize central schemes in
shock regions, and has been widely used. Its basis consists in evaluating the curvature
of the pressure field and to compare it to the average pressure value:

Piy1 = 2P+ Py

Sh=
Py + 2P+ Py

(3.8)

Identically, Lapidus [1967] described an artificial dissipation method where the artifi-
cial viscosity is a function of the velocity divergence. These artificial diffusion methods
nmodify tlie governing equation in order to stabilize the numerical scheme. The con-
cept of blending and/or switching between two numerical schemes with dispersive
and dissipative natures is somewhat more recent.

Several hybrid schemes based on ENO and WENO scheme for shock-capturing
have been presented. The design of the switching functions has varied from author to
author. Adams and Shariff [1996], Pirozzoli [2002] have used a switching formulation
based solely on the gradients in the flow. Let s;;,/2 be the gradient in fluxes at a
given interface i + 1/2:

i —

3.9
A9L‘i+1/2 ( )

Sit1/2 =

A spatial location in the flow was considered non-sinooth in the study of Adams and
Shariff [1996] if the following conditions were satisfied:

1. The modulus of the gradient times grid spacing is larger than a certain threshold
Siy1/20%iq1/2 > @

2. The gradient attains a local maximum |s;_1/2| < |si+1/2] > |Sit3/2]-

The more dissipative, shock handling scheme is applied to the three surrounding
interfaces, (1 — 1/2), (i + 1/2), (i + 3/2) if these two conditions are satisfied. Hill and
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Pullin [2004] suggested a switch based on the sinoothness factor computed in the
context of WENO schemes to define the weight coefficients of the scheme. Later, Hill
et al. [2006], Pantano et al. [2007] used a hybrid scheme that integrated a slightly
different smooth flow solver, and changed to a Jameson-type sensor, (Equ. 3.8) based
on both pressure and density fields.

Other smoothness sensors are described in the literature that intend to identify
shock waves within the computation field. Ducros et al. [1999] described a sensor
based on the physical observation that, unless very high levels of compressible tur-
bulence are expected in the flow, the turbulent structures are essentially vortical,
and the bulk dilatation of the flow is associated with shock waves. The following
expression: o

IV- U]l
IV-Ul| + IV x U]

quantifies the levels of compression and was combined to a Jameson sensor for shock
detection.

In the present study, not only shocks, but all discontinuities necd to be capturcd
with the upwind method. Three types of discontinuities found in supersounic flows
necd to be detected, namely the contact discontinuities, sharp flame fronts and shock
waves. The central scheme employed in the present study, and described in Sec.
3.3, can efficiently resolve gradients in the flow, but generates numerical oscillations
in regions where flow gradients change rapidly. Accordingly, the sensor retained for
the present implementation is based on the curvature of both the pressure and the
density fields, sufficient to ensure the detection of all three types of discontinuities.
The generic formulation of the smoothness parameter for variable ¢ (¢ = P or ¢ = p)
is given by:

(3.10)

141 —2¢i+ i o ‘

S, = |¢1i1+—l¢ilfl¢ﬁ¢.-l_|1| - <tiJh if I¢i+1 20 + ¢i-1| 2 €40 3.11

¢, T Sth h T ( S )
—04 otherwise

This formulation of Sy4; pernits a quantification of the changes in flow gradients
rather than an identification of the gradients alone. For the present study, the coef-
ficients e€p and ¢, are taken to be equal to 0.05 and 0.1 respectively. The threshold
values for the pressure and density switches, S¥ and Sf,h are equal to 0.5 and 0.25
respectively. These cocfficicnts were found from numerical experimentations to yield
accurate simulations of turbulent flows in the presence of shocks and/or density in-
terfaces. These sensors identify the regions where the pressure and/or density fields
show rapid variations and where these variables show significant gradients. This per-
mits to only capture the heads and feet of the discontinuities. The switch function
Aiv1/2 is then defined as:

(3.12)

/\. = 1 Zf max(SP,h SP,i+la Sp,ia S/),1+l) S 0
wla 0 otherwise




3.3 A Central Scheme for Turbulent Flows

The numerical scheme employed for the resolution of the turbulent structures should
have a small intrinsic dissipation in order to capture the evolution of the fluctuations
at the right rate. As reviewed in Chap. 1, several schiemes have been employed in
the context of DNS and LES. Compact schemes, for instance, have been found to
lhave a quasi-spectral behavior, and are as such well adapted to turbulent studies.
The high computational cost associated with these schemes, tlie poor behavior in
gradient regions and the complexity in the scheme formulation for higlily stretclied
and skewed grid make them poorly suited to practical studies. The focus of the present
study being the development of a numerical methodology for complex geometries, the
smooth flow solver integrated in the present hybrid niethod uses central differencing.
High order cemtral schemes have a low dissipation, permit a capture of turbulent
structures and have grid-conforming capability.

3.3.1 A 2™ Order Accurate Method - the Original McCormack Scheme

In order to reduce numerical dissipation, tlie use of central schemes is preferred.
Purely central schemes are, however, found to be unstable. Many researchers have
developed modified central schemes with limiters and/or artificial dissipation to sta-
bilize these numerical methods (e.g. Jameson and Baker [1983]). The method of
MacCormack [1969] does not add any explicit diffusion to a central scheme, but
rather uses the two stages of the time integration method to get a built-in dissipation
within the scheme. To do so, the fluxes at the cell interfaces are computed using al-
ternatively backward and forward differencing in the predictor / corrector sequence.
This combination results in a central differencing method over the entire time integra-
tion. The numerical fluxes at the interfaces are obtained from the interpolated state
variables. Noting Q:L 5 the interpolated state variable at the interface from backward

extrapolation, and correspondingly @7 ; tlie result of tlie forward extrapolation, the
i+

fluxes are computed as:
3 52
T (QH%) (3.13)
In the original McCormack method, first order extrapolations are used at each step of
the sequence. The neighboring cell centers are alternatively used to get the interface
fluxes as: R
1+% = Qi+l

- 3.14
ir: Q: o

This formulation yields second order accuracy in space and time (hereafter noted
0(2,2)). The combination of first-order extrapolation within tlie predictor/corrector
sequence leads to a higher-order sclieme. The backward / forward sequence is alter-
nated in order to prevent directional bias over the simulation.




3.3.2 A 4" Order Extension to the McCormack Scheme

Higher order schemes are better suited to the computations of turbulent flows. The
original McCormack scheme having shown good accuracy for many practical problems
of aerodynamics and turbulence, its predictor / corrector method is a good candidate
for the design of higher order methods. Gottlieb and Turkel [1976] studied general
forms of fourth-order accurate schemes with Richtmyer and McCormack time integra-
tion methods. They proposed an extension of the basic O(2,2) McCormack scheme
to O(2,4) accuracy, by defining the fluxes based on the extrapolation:

Q;% = 1 (7Qix1 — Qis2) (3.15)
= §(7Qi - Qi) '
Nelson [1997] showed that this scheme really is O(2,3), due to the relation that
exists between time-step and computational grid spacing, and developed a method
that truly is fourth order in space. The computation of the fluxes (method hereafter
called N24 scheme) is obtained from:

Q;:% = §(2Qi+5Qip1 — Quy2) r
i_+% = Gl 45— Qi) (3.16)
Here again, alternating the backward / forward sequence is used to prevent persistent
directional bias.

A stability analysis of the fourth-order extension to the McCormack scheine shows
that the N24 schenie is unconditionally unstable for the resolution of the linear ad-
vection equation. It is further shown that the highest order that can be achieved
with the McCormmack methodology that ensures conditional stability is third order
spatial accuracy. This theoretical analysis, based on the resolution of the simplified
advection equation is of fundamental importance, but no conclusion can be made on
the behavior of the scheme for the practical resolution of the Navier-Stokes equatious.
This system of equations is far more complex and non-linear. Furthermore, the pres-
ence of viscous forces stabilizes the practical simulations. Stable fourth-order scheincs
may be obtained within the McCormack formulation for the advective-diffusive equa-
tion with specific restrictions on the grid Reynolds number. In practice, very weak
numerical oscillations are observed in simulations of turbulent flows using the N24
scheme. The method used here differs from the original scheme of Nelson [1997], but
reduces the amount of numerical oscillations and keeps its fourth order accuracy:

5 7
:L% = —2Qia+ Qi +5Qin
QL1 = —2Qi1 + Qi + 5Qis2

2

(3.17)

The formulation is extended to non-uniform grid spacings. Following the notations
of Nelson [1997], as represented in Fig. 3.1, the spacing between the cell center and

the interface at i +1/2 is noted Agl), the spacing between cell center ¢ and cell ceuter
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Figure 3.1: Schematic representing the curvilinear grid spacing definitions, from
Nelson [1997].

i+ 11s A;. Grid stretching in the previous extrapolation procedure is accounted for
as:

(1)
::r;_ = -2 (rii) Giva+ 5 <7+ S5t AL =3 7= ) Qin
3 Al A‘(1_) 2 (1) "
+ﬁ (2 I 3_Al‘_ St A‘_: - Ai Q" + 5 27 1 - A 1 Al--l Qi_l
(3.18)
(1 A(l) A(l)

= afd,
Gy = _g<1 A‘1>Q,1+- 14 - 552 — 25 ) @

(1) (1) (1)
2 A Ai+A; 2 [ A4
iy (3—% T Em )@t g ] Qira

ADiyy

The evaluation of Qiﬁl /o Is used to evaluate the fluxes at the interface according to
Eqn. 3.13.

3.4 A Flux-Difference Splitting Scheme for Dis-
continuity Capturing

Shocks and contact discontinuities are common features of supersonic flows and re-
quire proper resolution. Central schemes such as the fourth-order scheme described
previously, are dispersive in nature, and create numerical oscillations around steep
gradients, strongly affecting the flow and leading to unphysical values in the computed
field. The upwind method required in the hybrid framework must be of dissipative
nature, and to capture strong gradients as a part of the solution. A flux difference
splitting has been chosen and implemented for the current study, and is hereafter
described. This approach fulfills the shock-capturing requirenient, and has a rather
low computational cost and a body-conforming capability. A higher-order method
is achieved by the use of a Monotone Upstream Centered Schemes for Conservation
Laws (MUSCL) re-construction technique. The resolution of the Riemann problem
is performed using an approximate Riemann solver, leading to the evaluation of the
interface fluxes.
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3.4.1 Interface Reconstruction

In flux difference splitting (FDS) methods, every cell interface is considered as a sharp
separation between a left and a right state with different properties. The first step in
FDS consists in re-constructing this Riemann probleni.

3.4.1.1 MUSCL Interpolation

The interpolation used in the current scheme uses the MUSCL approach of van Leer
(1979], in which the flow variables are assumed to have piecewise-linear variations.
The left and right states for a given interface are evaluated as:

Ukirje = Ui+ 9580 [(1 = 5) AL oU) + (14 R) AZ,0(V)]

1

R €(1-&iy1) + - (319)
UR 13 = Uss — L8 (14 1) A%, (U) + (1= K) AL 5(0)]
where first order piecewise constant extrapolation is used if ¢ = 0, and higher order is
obtained for ¢ = 1. The coefficient &; is computed from the flattening operation and
will be described later. The value for « drives the order of the interpolation. Third
order spatial accuracy is obtained for k = 1/3. All other values lead to a second order
interpolation. x = 1 corresponds to a central differencing scheme, whereas x = —1 is
a purely upwind interpolation.
van Leer [1979] introduced the concept of monotonicity in the interpolation proce-
dure: the evaluation of the states at the cell interface sliould not create new extrema
in the ficld. To enforce this condition, ltmiters are applied to the interpolation of
A /2(U). The interpolation technique uses the following differencing;

Din1poU) =V = Us

Aiyz/a(U)
A:H/Q(U) = Ai+1/2(U)¢(T1;:-1/2) 7"i-'-+1/2 = .:j/:(U) (3.20)
N )

)

- = i-1/2(U
z+1/2(U) - Ai+1/2(U)¢(Ti+l/2) Tiv12 = Ti,%(u_

where ¢ is the so-called limiter. The interpolation reads then:

Ubirja = Ui + L2 [(1 = ) 9t o) (Ui = Uict) + (14 1) $(riy ) (Uis = U3)]
UR

i+1/2 = e = C(l——f“) [(1 - K) ¢(Ti+3/2)(Ui+2 = Uit1) + (1 + &) ¢(7",7:1/2)(Ui+1 = Ui)]
(3.21)
the overall procedure can be re-arranged into:

Noting that v}t ., = 1/r_

i-1/2 i+1/22

Ui =Ui+ dizs) {(1 — K)H(ryp) + (L + &) o) 1/2] (B —Uir)

i-1/2
)7",+3/2] (Uirz = Uin1)

(3.22)
Several liniters have been developed and used in the past. Five limiters have been
identified and implemented for the current development, namely:

UR, , = mﬁ—ﬁ%ﬂkbwwm@»+u+@m

+3/2
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e Minmod Limiter
This limiter might be most cominon one. It can be expressed as:
GO (1) = maz [0, min(r, 1)) (3.23)
e Superbee Limiter

dg(r) = maz [0, min(2r, 1), min(r, 2)] ' (3.24)

Thie Minmod and Superbee limiters are actually part of a class of limiters described
by Sweby:
¢5(r) = maz [0, min(Br, 1), min(r, 5))

e (3.25)

where the minmod correspouds to 3 = 1 and the superbee corresponds to 5 = 2.

e Monotonized Central Limiter

Dnelr) = myoz | 0, 7m80(2r, 2, 1—;) (3.26)
e Vanu Leer Limiter
Pu(r) = Kl% (3.27)
e Van Albada Limiter
Pua(r) = % (3.28)

All these limiters satisfy a symmetry condition:

i (%) (3.29)

r

The relation expressed in eqn. 3.22 is simplified for a syinmetric limiter to:

Ubirjo = Us + S58e(rE ) (U; = Uica)

3

e(1—Eiss 5 (3.30)
Ui[.f.l/g = Ui+l — %¢(Ti+3/2)(Ui+2 . Ui+1)

showing that the dependence on « of the original interpolation procedure is lost when
syminetric limiters are used. The implication of this property is that the order of the
reconstruction depends on the local variations of the interpolated variable, and on
the limiter used for the interpolation.

A schemne is said to be Total Variation Diminishing (TVD) if the total variation
of the solution is diminishing as the simulation progresses. Limiters that satisfy the
TVD condition lead to a monotonic scheme (Harten [1983]). The limiters used in the
MUSCL technique ensure a second order TVD property if their descriptive functions
lie in the region described in Fig. 3.2. The implemented limiters are shown in Fig. 3.3
and 3.4. Among the limiters that have been implemented, superbee is found to be the
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Figure 3.2: Region defining second order TVD schemes (shaded in grey).
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Figure 3.3: Characteristic curves for the Monotonized central (MC), mimmod (MM)
and superbee (SB) limiters.
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Figure 3.4: Characteristic curves for the van Leer (VL) and van Albada (VA)
limnters.

most anti-diffusive. It is often considered over compressive, i.e., it tends to produce
artificial comnpression and thus to sharpen profiles into discontinuities. Minmod is the
least compressive option, and provides a great amount of nuinerical dissipation. More
details about the design, the use, and the limitations of the limiters can be found in
reference books on CFD (see, e.g. Hirsch [1997], Taumelill et al. [1997])

The reconstruction, Equ. 3.30 is then fully defined, and can be applied to various
sets of variables (Berthon [2005]). In the present work, the operation is performed on
the primitive variables (5., P, px). These variables are often used in this context,
as they permit a crisp capture of the discontinuities, at a very small computational
cost.

3.4.1.2  Monotonicity of the Reconstructed States

The monotonicity of each reconstructed variable is ensured in the method described
previously by the use of TVD limiters. However, a global monotonicity of the inter-
polation procedure requires more attention.

e Conserving the Sign of the Gradients through the Interface

The monotonicity of the solution is enforced by:

max(U;, Uiyr) > Uil+l > min(U;, Uiy1) -

} . 31
maz(Uy, Uupr) > U, > min(Uy, Uisn) o

2

Conservation of the sign of variations across the interface is however not ensured
by this method. The configuration shown in Fig. 3.5 shows that the results of the
reconstruction procedure can satisfy the monotonicity condition expressed in Eqn.
3.31 and violate the global variations of the interpolated variable: Uy, — U; < 0 and

Ui’il /2~ Uiﬂ‘rl /2 > 0. The satisfaction of this extra monotonicity constraint is checked
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Figure 3.5: Schematic illustrating the gradient violation during the reconstruction
procedure.

and enforced in the current procedure. Violation of this condition is corrected by
setting:
1 )
UL new _(Uillild UR old) Uili,vllew UL new (332)

1+— 9 1+2 z+—

It should be noted that the initial reconstructed field, U,; Lold and U, By "ld, satisfy by

construction the monotonicity expressed in Eqn. 3.31. ThlS correctlon ensures that
U.I:L'few and Uﬁ?ew also satisfy this property.
+3 3
e Monotonicity of secondary variables

The interpolation is performed on a selected set of variables. In the present case, as
mentioned earlier, the primitive variables are used for reconstruction. Other variables
are needed for the Riemann solver resolution and flux computation. The left and right
states of the temperature are required, for the evaluation of the speed of sound and
the evaluation of the total energy. Temperature is re-computed from the interpolated
field, rather than extrapolated itself. The monotonicity of this secondary variable:

maz(T;, Tip1) > Ti’;% > min(T;, Tiy1) (3.33)
1s strictly enforced through modifications of the pressure interpolation if needed.
e Monotonicity of the species mass fractions

The MUSCL reconstruction is applied to the species densities, and the mass frac-
tions are recomputed on each side of the interface. This operation requires special
attention. The values of the limiters for the different species are likely to differ if the
procedure is perforined independently on each one of the species. The resulting set
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of mass fraction on a given side of the interface does not satisfy mass conservation,
nainely:

N,
M (3.34)
k=1

A re-normalization of the mass fraction at the iuterface has often been used in the
past (Fryxell et al. [1989], Plewa and Miiller [1999]). This method unfortunately leads
to non-monotonic field of species mass fractions. The method adopted in the present
study cousists in reducing the order of the interpolation of the species to the rmost
limating reconstruction. For the species densities, the reconstruction reads:

Bhons = o+ 258 min (6 (1, 0000)) ) (o = rim1)
e . (3.35)
p;,pr% = Pritl — T UN (¢ (7’,-+3/2(Pk))) (Priv2 = Pri+1)
k=0..N,

where & = 0 refers to the reconstruction of the total density.

3.4.1.3  Flattening Procedure

Colella and Woodward [1984] showed that post-shock oscillations were found in the
resolution of strong shocks using shock-capturing schemes. This instability of the
nuierical schieme is related to the self-steepening property of the shocks. Colella and
Woodward [1984] have found that reducing the order of the reconstruction in regions
of steep and strong pressure gradients could eliminate these perturbations. The flat-
tening method described in this reference is implemented in the current formulation
to evaluate the coefficient & in Eqn. 3.22, employing the same coeflicients. A cell is
identified as being part of a shock wave if the following two conditions are satisfied
[Bga = Ba] 1

dpy= -—=>0 3.36
" mm(Piﬂ, Pi—l) 3 ( )

du,,‘ = Uipl — Uiy < 0 (337)

The shock thickness is then measured by relating the pressure gradient across two
cells to the gradieut across four cells,

Py = Fia
PO ;. Sl i = | 3.38
o Re=0 3 e
£ = mazx [0, min(l, (S~ 0.75))] (3.39)

Finally, the limiting factor & in the reconstruction procedure, Eqn. 3.30 is then
defined as:

&=

{ ma:c(é,f:iﬂ), ifPiy1 — P <0 (3.40)

max (E,-, {,-_1) , . otherwise
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With this description of the flattening method, the reconstruction procedure for
the left and right states of the interface is now complete. The numerical fluxes are
then obtained from these states using a Riemann solver. The next section describes
the Riemann solver developed for the current study.

3.4.2 A Class of Approximate Riemann Solvers - HLL-

A brief description of the HLL Riemann solver family is given hereafter. The HLL
approximate Riemann solvers have first been developed by Harten, Lax and van
Leer (Harten et al. [1983]), by expressing a hyperbolic system of conservation laws
in integrand form. From an initial interface separating two constant states, it is
assumed that NV waves can be formed from the characteristics evolution of the systen,
scparating N + 1 constant-properties regions. The knowledge of the jump relation
through the waves and the wave-speeds permits to obtain a closed form expression
for the intermediate states, and the associated fluxes. Harten et al. [1983] carried a
full derivation for a two-waves problem, leaving the wave-speeds as sole unknowns to
the solver, and have given a mathematical description for the 3-waves problem.

The 2-waves formulation for the resolution of the Euler equations (with wave-
speeds expressions given by Einfeldt [1988], Einfeldt et al. [1991], thus called HLLE)
has been proven robust and adequate for shocks and rarefactions, but appears as very
dissipative for contact discontinuities. Toro et al. [1994] proposed a correction to the
derivation of this solver, in order to add the missing contact wave (thus called HLLC),
whose wave-speed was estimated by an approximation of the particle velocity in the
interniediate region. The formulation is closed by expressing the jump conditions
across all wave obtained from the exact Riemann solver for the Euler equations. This
fornulation was further studied by Batten et al. [1997], who related the averaged
intermediate state to the HLLE evaluation, thus leading to an easy, but yet robust,
3-waves Riemann solver. It should be noted that this 3-waves solver does not follow
the original work of Harten et al, as the intermediate wave speed is estimated from
thc 2-wave solver as a correction, and does not reduce to a single-wave problem
in the physical limit of an isolated discontinuity. Linde [2002] derived a 3-waves
Riemann solver (often referred to as the HLLL, of the HL*® Riemann solver) that
follows the original framework of Harten et al. [1983]. The basis of this formulation
is more general than for the HLLC solver, as no assumption is made on the equations
solved. The intermediate wave strength and jump conditions are determined from an
entropy-minimizing procedure. This alternate 3 — waves solver can be used for the
resolution of any hyperbolic system of equations. In particular, it has been shown
(Gurski [2005]) that the HLLC formulation is a specific case of the more general HLLL
formulation for the resolution of hydrodynamics problems. The increased complexity
of this solver is adapted to complex governing equations (Miyoshi and Kusano [2005]),
but is not justified in the resolution of hydrodynamics flows, where the HLLC solver
is found to yield accurate and robust solutions. The derivation that will be hereafter
presented focuses on the 2-waves formulation of the original HLL method and its
HLLC extension.

The Riemann solver developed for this study uses a combination of the HLLE
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Figure 3.6: (z,t) diagram of an approximate Riemann problem evolution with two
characteristic waves.

and HLLC solvers, in order to reduce the instabilities associated to contact-resolving
solvers. The sinipler 2-waves HLLE will be described hereafter. Following this deriva-
tion, the wave-speeds estimates, and the modifications that lead to the HLLC solver
are given.

3.4.2.1 The 2-waves HLL Riemann Solver

The derivation of this solver is based on the assumption that an initial one-diinensional
discontinuity gives rise to 2 waves, a left-moving wave (of Eulerian speed S”), and a
right-moving one (of Eulerian speed S%). A typical (x,t) diagram for a subsonic case
is given in Fig. 3.6. The integral form of the Euler equations (see, eg, Toro [1999]),
reads:

f Udz — F(U)dt] = 0 (3.41)
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where, noting q = V.ii=un, + vn, + wn, the interface normal velocity amplitude,
U and F(U) are given by:

p pq
pu puq + Pn,
pv pvg + Pn,
U= pw |, F=| pwg+ Pn, (3.42)
pE (pE+ P)q
pksgs pksgsq
LAY | | pYig

Let T be the local time step, T = t"*' —t* > 0. Note that, in all cases, SY < S®. Let
us first treat the case where SY > 0, which corresponds to a supersonic flow from left
to right. The S£ wave would lie on the right of the interface, and the flux at z = 0,
F*, is then obviously given by F(U%). Similarly, if S® < 0, the flow is supersonic,
from right to left, and F* is given by F(UF).

Now, let us examine the case where S < 0 < S®. The lengths X, X, can then be
expressed as X; = —TS* and X, = T'S®. Expressing the integral form of the Euler
equations on the system in Fig. 3.6 gives:

fo_xl U(z,0)dz — foT F(U(Xl’ t))dt o f:\/(l Uz, T)dx

— [ F(U(X,,t))dt + [y U(z,0)dz =0 (3.43)

Assumning piecewise constant variables, and hence, piecewise constant fluxes, the pre-
vious relation can be re-written as:

sl oy P oy

+U*.((SR — SEYT) = FR(=T) + UR.( - SRT) = 0 (3.44)
relation that, after re-arrangement, leads to:
FL _ QLUL _ (FR _ GR[JR
e i - (3.45)

SR_SL

This shows that once (U%, UR) is known from the reconstruction procedure, and once
the wave-speeds (S*, ST} are estimated, the variables in the x-region are fully defined.

The integral relation applied across a given k—wave, k = L/R, results in the
Rankine-Hugoniot relations that read:

F*ZFL‘*‘SL (U*_UL)

Tl — FR e SR (U* o UR) (346)
From these 2 relations, one can eliminate U* in order to determine ™ as:
SEPE — SEFE . SEGRITE — 7k
Fr = il e ) (3.47)

Sk _ QL
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Thus, the flux evaluated at the 7 + 1/2 interface from the 2-waves HLL Riemamn
solver reads:

FL if D B
i = B g BP=lE §R (3.48)

B SR<0
Once an evaluation of the wave-speeds (S%, S%) is provided, the HLL Riemam1
solver is fully defined. Several wave-speeds estimates can be found in the literature
(Davis [1988], Einfeldt [1988], Einfeldt et al. [1991], Toro [1999]), leading to schenies

of different robustness and dissipation. In the present development, the wave-specds
are estiinated following the work of Einfeldt (HLLE), as:

St = min [q"—c",q—é] S® = max [qR+cR,q+é] (3.49)

where ¢ refers to the Roe-averaged contravariant velocity, and ¢ is the speed of sound.
The Roe-averaged variables are obtained from:

); oL oR oL R
U uk e
v ) vk VR
U=| @ | =——e— | /% wk + VpH wh (3.50)
H Vol + /pf HL HR
kggs k393 L k593 R
L % | k | Yo L. Ypr )

The speed of sound ¢ is not directly obtained from this procedure and is re-comnputed
from the Roe-averaged variables ¢ = f(h,p,Yi). These wave-speeds are related to
the characteristic wave propagation speeds on each side of the interface. It should
be noted that, for the present LES calculations, the eigenvalues of the governing
equations are not modified by the governing equation for k*9°. The estimates given
can be used for the filtered Navier-Stokes equations.

This solver has proven to be robust and accurate for hypersonic calculations and
shock capturing purposes. Its assumption of double wavc is however limiting, and the
consequent numerical smearing of contact discontinuities, shear waves, etc... makes
it unsuitable for viscous and turbulent calculations. An extension of this scheine has
been developed and presented by Toro et al. [1994], where the middle wave in the
Riemann problem is taken into account in the derivation of the fluxes. This extended
Riemann solver is named HLLC (C standing for Contact), and its derivation is given
in the next section.

3.4.2.2  Restoration of the Middle Wave - the HLLC Riemann Solver

It is assumed for the derivation of the HLLC solver that a given interface separating
two states gives rise to three waves, of speed S for the left moving wave, S for
the right moving wave, and S* for the contact wave. These discontinuities separate
counstant states of the fluid. S separates U from UL*, S* is the interface betwcen
U and UR* while SF separates UR* from UR. This assuinption of thin interfaces is
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Figure 3.7: (z,t) diagram of an approximate Riemann problem evolution with three

characteristic waves.

justified for both shocks and contact discontinuities, and is an approximation in the
case of rarefactions. A typical representation of a subsonic system is shown in Fig.

i
Let T be the local time step, T = t"*! — t" > (. Note that, in all cases, S* <

S* < S®. Similarly to the HLL solver, the case of a supersonic flow from left to
right, where ST > 0, leads to a flux at x = 0 given by F(U%). Again, if S® < 0,
the flux is given by F(U®). Now, let us examine the case when St < 0 < SE. The
lengths X, and X, can then be expressed as X; = =TSt and X, = T'S® respectively,
and similarly, X = T(S* — St), X = T(S® — S*). The Euler equations in integral
form, Eqn. 3.41, can be applied to the system represented in Fig. 3.7, leading to the

relation:
J M U@, 0)de — [T (U 1)dt + X, Ule, T)dz (351)

+ [y Uz, T)dz — fp F(U(X,,t))dt + [y U(z,0)dz =0

With the same assumptions of piecewise constant variables and piecewise constant
fluxes as in the derivation of the HLL solver, the previous relation can be re-written

as:
TS0 — B () U ((SE ST
+ UR*.((SR -- S*)T() ZFR‘( —(T) o UR.( 2 SRT) 1 (3.52)

relation that, after re-arrangement, leads to:

(S = SLYyU™ + (8% - SHUR = FE - SLUY — (FR - SRUR) (3.53)
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This relation relates the left and right x-variables together, and is often called the
consistency condition. Note that assuming a unique x—state, so that U = UF*
recovers the Cousistency Condition of the HLL solver, Equ. 3.45.
The integral applied around a control volume surrounding a given k—wave leads
to:
U*.(SFT) = F*.(T) = U*.(- S*T) + F*.(T) =0 (3.54)

so that the corresponding Rankine-Hugoniot relations across the k—wave, k = L/R,
are recovered, and read:

FL* - FL 4 SL UL* _ UL)

FR* o FR + SR UR* o UR) (3'55)
Identically, the Rankine-Hugoniot relation across the x-wave reads:
Fir=fFR 45" (UL* — UR*) (3.56)

The relations 3.53, 3.55 aud 3.56 give 4 relations for 4 unknowns (F'* FR* UL* and
U#R*). 1t is however straightforward to show that they are not linearly independent.
An assuinption has to be made on the intermediate states in order to solve this system
of equatious.

Toro et al. [1994] closed the relation by assuming that the intermediate wave
had the samne properties as a contact discontinuity. Its propagation speed is then
assuined identical to the particle velocity in the x—region, and this wave retains the
initial discontinuity in the passive scalar field. This also implies that both convective
velocities and pressures have to match across the interface. Mathematically, those
assumption are expressed by:

(Vir-ii=gh) = (VR i1 = ¢™) = 5*
b e (3.57)
b = gk, ph* = oF
wlere ¢ is any passive scalar advected by the fluid (¢ = k*9°,Y%,...). Note that
the component of the velocity transverse to the interface, ¢F = V¥ — (\7"‘ : ﬁ) =
VE_S*, k = L/R is a passive scalar for this one-dimensional probleni. As mentioned
in Toro [1999], all of these conditions are exactly satisfied by a contact discontinuity

computed from an exact Riemann solver.
With these assuinptions, one can re-write the four first elements of the vectorial
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equation expressed i1 Eqn. 3.53, as:

[ I UR' U 14 L
L+ P R X i ot »
L, L« Rx,, Rx R, R L, L
PN R_qey | PP cr | PR | pu
(S ) plrpls {5 — 5F) s S Ry R o i
ﬂf,r” L pR*wR* pR'U’R ,l)L'lL’L
gl RgR
prqlut + Pin, B gt P,
ptgtvl + Pin, plgul 4 PRy,
plgtwt + Pin, plgfw® + PEn,
FL FR
(3.58)

By assumption, ¢ = S* for both k = L/R. Projecting the vectorial momentum
equation on the directional unit vector gives, along with the first relation, the following
set of two equations:

/)L*(S* o SL) - /)R*(SR o S*) = /)R(SR o qR) o /)L(SL o qL)
(o487 = $%) + p™ (S = §)| §* = PE = PR+ pRgR(S® - ¢7) - plqH(S* - ¢t)

/

-~

(3.59)
Replacing the under-braced terni in the last equation by the right-hand side of the
first equation above leads to:
PR — P* + ptq"(S* — q*) — pRqR(S" — ¢F)

o p(St —¢) — pR(SF —¢F) 66y

Equation 3.55 is closed and the expressions for all x-variables are obtained. One can
write the first four relations, for continuity and momentumn:

pk*S* pqu pk* pk
pk*S*uk*—i-Pk*nz _ qukuk‘f‘Pknz +Sk pk*uk* B pk k
p:*S*’Uk‘* S Pk*ny p’quvk.+ Pkny plf*ka pkvk
p *S*u"‘* 4 Pk*nz p"qkw" A Pknz _ pk*’wk* /)k’wk
s ’ s S S e -

(3.61)

the first relation leads directly to an expression for the density in the star region:

Sk _ g
kx k
=p - 402
A (3.62)
Again, multiplying the second relation by n,, the third by n, and the last by n,,
adding those three relations, and using the expression for p** given in Equ. 3.62 leads
directly to:

P*¥ = P* 4 o*(¢* — §*)(¢" — %) (3.63)

04

S G



Note that the relation expressed in Eqn. 3.63 is valid for botlt K = L/R, and satisfies
PL* = PR+ Let us define 8%, o* and w* as:

:Bk = gﬁ*:st
of =pgF+1 (3.64)

wh = —B*(q* - §¥)
The state vectors U** can then be expressed as:

- 0 5

U™ =a*UF + | pu'n, (3.65)

With these relations, the evaluation of the wave-speeds provides the description of all
states in the Riemann problem under consideration. It is then possible to describe
the fluxes at ¢ + 1/2 interface. The general expression for these fluxes is given by:

FL if 0= 8-
nipo _ ) P =Fr+SH U™ -UY) if S'<0<S" (3.66)
U PR pRL SRR ) af SR SR '
FR if S E0

The HLLC Riemann solver is then fully defined, and only the wave-speeds are needed
to close its expression. The estimates detailed in Eqn. 3.49 for the HLLE solver are
used for the evaluation of S* and S%, whereas S* is defined through relation 3.60.

3.4.2.3 A Hybrid Riemann Solver - HLLC/E

Two Riemann solvers of the HLL- framework have been described earlier. The HLLE
considers a 2—waves evolution to the Riemann problem constructed at the cell inter-
faces. Such Riemann solvers are called non-contact-preserving, as the intermediate
wave, the contact discontinuity, is ignored. The improvement brought to this solver
by the HLLC solver is the restoration of this wave in the problem. The latter solver if
less diffusive, and improves greatly the results in computations of viscous problems.

Solvers that simulate 3—waves problems are kmown to suffer from instabilities in
shock regions. The odd-even decoupling and carbuncle phenomena can lead to the
creation of oscillations in the post-shock regions, and to the deformation of shock
fronts. The HLLC solver is no exception. 2—waves solver do not suffer from these
instabilities.

It order to reduce the iustabilities that can occur in shock regions, Quirk [1994]
suggested to switch to a non-contact-preserving solver within shocks thickness. It was
however found that the instabilities come from the use of contact-preserving solvers
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in the directions transverse to the shock front. The hybrid solver designed for the
present study uses this observation to combine HLLC and HLLE as follows. The
hybrid solver returns the flux evaluation of the HLLC solver by default, but reverts
to the HLLE fluxes if a shock is detected in the direction transverse to the direction
of computation. Shock detection is performed following the mmethod given in Equ.
3.36 and 3.37.

{ g{‘/l‘f if (dp; <0 and dy,; <0) or (dpx < 0 and d,x < 0)

HLLC
i+1/2

u il
it1/2 =

otherwise (3.67)

The MUSCL interpolation / HLLC/E Riemann solver approach is fully described.
This scheme is adapted to the resolution of aerodynamic flows with TPG equation
of state, and can be used on curvilinear grids. The performance of this scheme on
classical test-cases is reported in Sec. 3.5.

The presentation of the upwind scheme completes also the description of the hybrid
scheme developed in the present study. A verification of this hybrid methodology on
classical and fundainental test cases is presented in App. 3.6. Also, verification of
the scheme is presented through direct numerical simulations of shock / isotropic
turbulence interactions in Chap. 4.

3.5 Verification of the Upwind Scheme

The capture of physical discontinuities is essential for the numerical sitnulations of
supersonic turbulent flows. A shock-capturing methodology has been developed to
achieve this goal, and its description is given in Chap. 3. The method implemented
is based on flux difference splitting, as these methods yield robust and accurate res-
olutions of shock waves and discontinuities, and have limited dissipation. However,
Riemann solvers, whether they are exact or approximate, have known instabilities
aud limitatious. The manifestations of these flaws are well-documented.

The proposed upwind solver is designed to show a reduced sensitivity to theses
instabilities. The reconstruction of the Riemann problem uses a flattening procedure
which prevents under-resolved strong shocks within a comnputation. Also, the hybrid
Riemann solver HLLC/E switches to a non-contact preserving solver in the regions
transverse to shock front. All these methods are included to reduce the instabilities,
and the aptitude of this scheme in practical simulations will be presented hereafter.

e Unphysical Values

Approximate Rieinann solvers that are based on linearized estimates of the flux
differences can lead to unphysical approximations of the total density or of the in-
ternal energy (p < 0, e < 0) in rarefactions. A consequence is the computation of
"rarefaction shocks”, an unphysical discontinuity computed within a rarefaction fau.
A few entropy fixes have been advised and implemented that fix this specific failure
(see Kermani and Plett [2001] for a comparison of the most comnion entropy fixes).
For very strong rarefaction computations (near-vacuum states), entropy fixes are not
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sufficient to prevent the Riemann solver from computing unphysical solutions. HLL
solvers do not suffer from this instability, do not suffer from such instabilities. This
property of positivity preservation will be demonstrated later.

e Post-Shock Oscillations

Classical Riemann solvers along with a higher order reconstructions show an in-
stability when a shock is propagating at low grid speeds, that is, when the shock
propagation speed is small within the frame of reference of the computation. This
phenomenon, first reported by Colella and Woodward [1984] was shown to be the
consequence of the self-steepening properties of the shocks. The cure designed in this
reference paper, the flattening procedure, is iinplermented in the present formulation
in order to reduce such instabilities.

e Odd-Even Decoupling and Carbuncle Phenomenon

The carbuncle plienomernon is an instability the arises in hypersonic coimnputations,
when stagnation points create recirculation regions behind bow shocks. The curved
shock is incorrectly captured, and small kinks form along the shock front. This
phenomenon has been identified in blunt body calculations, and has been analytically
analyzed (Pandolfi and D’Ambrosio [2001], Svetsov [2001], Chauvat et al. [2005]).
Most accurate upwind methods suffer from this instability (Roe scheme, AUSM-
M, Osher scheme, etc...), whereas flux vector splitting and non-contact preserving
methods do not show this instability.

The odd-even instability occurs when shock fronts propagate with the main front
aligned with the grid. This instability is triggered by small numerical round-off errors
which grow into strong oscillations (Quirk [1994]). Again, this instability is found in
many Riemann solver, more particularly, in exact Riemann solvers. And once again,
non-contact preserving solvers do not scem affected by this perturbation.

The hybrid solver presented in Chap. 3 was specifically designed to minimize all
these perturbations. But, as the robustness of the solver should not be detrimental to
the accuracy of the resolution, the following verification study shows that the upwind
method is not subject to strong instabilities and remains accurate.

3.5.1 One-Dimensional Tests

The ability of the shock-capturing methodology to capture shocks is tested first.
Two particular aspects are considered: first, the ability to capture shock waves
at their right propagation speed is tested. This study is performed over a one-
dimensional domain, since the Rankine-Hugoniot relations are essentially expressed
in one-dimensional form. The second test focuses on the capture of oblique shocks.
Here, the extension to multi-dimensional problems over curvilinear grids is tested.
Also, the amount of post-shock oscillations can be quantified.

The very first case is that of a normal shock on a one-dimensional grid. Differcnt
Mach numbers have been tested, and all simulations lead to the saine conclusions.
The case of M = 5.2 is hereafter presented. A 0.1m long domain is discretized
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Figure 3.9: C,(T) for a thermally perfect gas, and pressure profiles for M=5.2
normal shock.

using 100 grid cells. Initial conditions are given by (P, T, M), = (101325., 300.,5.2)
from 0. to 0.05m, and the steady Rankine-Hugoniot relations are used for the initial
jump conditions, leading to (P, T, M), = (3179578.5, 1859.1257,0.4125191924) for a
calorically perfect gas with a specific heat ratio v = 1.4. Supersonic inflow is used
at the left boundary, while a subsonic characteristics-based non-reflecting outflow is
used at the right boundary. The flow properties reach a stationary state for this
problem, and the stationary pressure profile is shown in Fig. 3.5.1. The shock is
crisply captured, with two cell in the shock thickness. The Rankine Hugoniot jump
relations are correctly captured, and the propagation speed comes out correctly. A
second test was performed using an arbitrary thermally perfect gas. The dependence
of the specific heat at constant pressure is represented in Fig. 3.9(a), and the pressure
profile obtained at stationary state is shown in Fig. 3.9(b). Here again, the Rankine-
Hugoniot relations are recovered in the simulation, and the shock is captured over
two cells.
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(a) Computational grid (b) Pressure contours

Figure 3.10: Computational grid for oblique shock calculations (left) and pressure
contours for M;, =5 and a ramp angle of 15°.

The performance of the upwind on skewed grid is tested by sinulating supersonic
flows over ramps. The capture of oblique shocks is of fundamental importance for
practical applications. The simulations performed here consist in a two-dimensional
channel with an inclined lower wall, as represented in Fig. 3.10(a). The domain is
discretized using 80 x 36 grid cells. Supersonic inflow and outflow are used at the
left and right boundaries respectively, whereas the top and bottom boundaries usc
symmetry conditions. The angle of the ramp at the bottom wall has been varied
between 5° and 25°, and three different inflow Mach numbers were tested: M, = 2,
M, =5 and M;,, = 10. This test was conducted for calorically perfect gases (v = 1.4).
The accuracy of the simulation was assessed by comparing the shock angle from the
computation to the theoretical values (see, e.g. Anderson [2003]). A typical flow-
field is presented in Fig. 3.10(b). All shock angles were captured accurately, with
less than 3% error on the shock angles. Small oscillations in the pressure field are
obtained close to the head of the ramp, which quickly dampen further downstream.
The present shock-capturing methodology efficiently captures shock waves at the right
propagation speed and performs well on skewed curvilinear grids.

A series of test cases for shock-capturing schemes have been proposed in the lit-
erature. These tests have been designed to assess the capacity of different numerical
schemes in resolving fundamental features of supersonic flows, as well as some par-
ticularly challenging configurations. A compilation of such tests is reported in Liska
and Wendroff [2003], and are repeated using the present shock-capturing formulation.
These tests, denoted T'1 to T'7, are performed over a one-dimensional domain. They
are all based on the physical evolution of an initial interface into a complex flow. All
cases have a domain that extends from 0 to 1, except case T7 which has a domain
extending from 0.1 to 0.6. The paraineters for these tests are given in tables 3.1 and
3.2. The initial physical states at the left and right of the discontinuity are given
in table 3.1. In table 3.2, zy represents the physical location of the initial interface,
T is the total physical time of computation. A calorically perfect gas EOS is used
in all cases. The specific heat ratio of the gases, v, depends on the problems and
is reported in table 3.2. Also, the boundary conditions used in these problems are
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either supersonic inflows (7 in table 3.2), or supersonic outflows (o in table 3.2).

Table 3.1: Initial conditions for the left and right states in the one-dimensional tests
used to validate the shock-capturing methodology.

test | p Uy D Pr Ur Pr
T1 1 0.75 1 0.125 0 0.1
T2 1 -19.59745 1000 1 -19.59745 0.01
T3 i -2 0.4 1 2 0.4
T4 | 1.4 0.1 1 1 0.1 1
T5 | 1 1 10| 1 -1 g

Table 3.2: Parameters used in the one-dimensional tests used to validate the shock-
capturing methodology.

test | xo T v resolution left boundary right boundary
T1 |03 02 14 100 i )

T2 | 0.8 0.012 14 200
T3 |05 015 1.4 100
T4 | 0.5 2 L 100
T5 | 0.5 1 2/3 100

—, e O (@)

1
0
0
1

A last test T6 was performed, where the evolution of two initial interfaces is
simulated. This interacting blast wave problem was first considered by Colella and
Woodward [1984], and is a particularly stringent configuration to simulate. For this
case, the physical domain extends from 0 to 1. The left and right boundaries are
treated as symmetry boundaries. (p,u,p) = (1,0,1000) between z = 0 and z = 0.1,
(p,u,p) = (1,0,0.01) for 0.1 < z < 0.9, and (p,u,p) = (1,0,100) between = = 0.9
and x = 1. The physical time for this simulation is of 0.0038.

All the results presented hereafter are compared to the results of high resolution
simulations performed using a Piecewise Parabolic Method (PPM). Tests 71 and 72
are variations on the classical shock tube test case of Sod. In T'1, the iuitial interface
forms a right-moving shock, a left-moving rarefaction fan, and an intermediate contact
discontinuity. Specifically, the rarefaction fan contains as sonic point, a physical
feature that some linearized solver cannot resolve correctly. With the current schenie,
all waves are correctly captured at their right speed. The expansion is continuous,
and the capture of an unphysical rarefaction shock does not occur. Furthermore, the
dissipation applied to the sharp waves is relatively small: the shock is captured over
three cells, and the contact spreads over four cells. The latter is mostly dissipated
from the initial stage of the development.
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Figure 3.11: Results of test cases T1 and T2 for the validation of the upwind
methodology.

Case T2 is a variation where the contact discontinuity is stationary in the course of
the simulation. The peak in density is correctly simulated, with minimal dissipation.
Again, the shock is resolved over three cells, while four cells are needed for the strong
contact discontinuity.

The test case in T'3 evolves into a near-vacuum state in the center of the domain.
Both the pressure and the density reach values close to 0, but the internal energy
remains relatively high. The HLLC/E scheme is able to capture this phenomenon
withiout unphysical values for the internal energy. The lowest temnperatures, formed
at the center of the domain, are however not fully captured.

T4 tests the ability to capture slowly moving contact discoutinuities. This con-
figuration is difficult to resolve properly, as the slow motion tends to dissipate the
deunsity front. In the current simulation, eight cells are necessary to resolve this juinp
in density. The amount of dissipation is for this case significant, but comparable to
other state of the art numerical schemes (Liska and Wendroff [2003)).

Test T'5 is the classical test case of Noh, where two infinite strength shocks prop-
agate outwards from the center of the domain. This test shows that, even very strong
shocks are captured at their right propagation speed, and that the fronts are resolved
over three points. The use of the flattening procedure smears slightly the shock fronts,
but permits the resolution of the problem with minimal post-shock oscillations. The
state at the center of the domain should be strictly constant. A dip in the density
profile remains from the formation of the shocks. But apart from this hupact of the
initial conditions, the physics of this test problem is well captured.

The interacting blast waves problem is particularly intricate to resolve. The siiu-
lations of the shock fronts crossing can lead to a strong dissipation of the intermediate
region. The scheme used here captures most of the structures correctly, and recovers
the blast propagation speed after their interaction. The amplitude of the strongest
wave 1s however under-estimated by the current methodology.
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methodology.
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Figure 3.14: Scheniatic of the perturbed grid used in the odd-even test.

These one-dimensional tests have shown that the current scheme correctly cap-
tures the shock fronts and their propagation speeds, with reduced dissipation. The
contact discontinuity are smeared over a few cells, but their behavior is otherwise
well simulated. The performance in strong rarefactions is not as good as for the other
tests. Such configurations are however not important for the type of applications
considered in the present study. Overall, this shock-capturing method is adapted to
the capture of discontinuities in supersonic flows, and compares overall well to other
numerical techniques (presented in Liska and Wendroff [2003]).

3.5.2 Two-Dimensional Cases

The good performance of the shock-capturing methodology for fundamental ome-
dimensional problems has been presented. The extension to multi-dimensional tran-
sient problems can be problematic for several reasons: the instabilities reviewed at
the beginning of this appendix arise in multi-dimensional problems only. Also, the
capture of shock propagations at the right speed is fundamental in one-dimension.
The capture of shock propagation in arbitrary directions in a multi-dimensional prob-
lemn is somehow more challenging. A review of the scheme performance on test cases
triggering the instabilities is given first. The resolution of spherically propagating
shocks are presented after.

The behavior of the hybrid solver on the odd-even decoupling is studied in a
test-case adapted from Quirk [1994] and Liska and Wendroff [2003]. The problem
follows the saine initialization as test case T8 of Sec. 3.5.1 on a two-dimensional
grid: (z,y) € (0,1)2(0,0.125). 800 x 10 grid cells are used to discretize this problem,
and the grid is uniform except at the centerline where a very small perturbation is
generated. The spacing in the y-direction being Ay = 0.0125, the amplitude of the
perturbation is 2 10~7 and the formulation of the y-components at the centerlines
reads:

Yer = Yo + (=1)'1077 (3.68)

A sketchi of the resulting grid, where the perturbation has been amplified for clarity,
is represented in Fig. 3.5.2 The test case has been run using five different solvers:
the Two-Shock Riemann Solver (TSRS) and the solver of Roe with Harten-Hyman
entropy correction have been considered along with the HLLC, HLLE and HLLC/E.
In all cases, the MUSCL reconstruction used a monotonized central limiter and flat-
tening. The computational fields of density right before the interaction of the two
blast waves is showed in Fig. 3.15. The top figure obtained with HLLE shows the
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Figure 3.15: Results of the odd-even test case using several Riemann solvers: HLLE,
Roe, HLLC, TSRS and HLLC/E solvers respectively.

physical phenomena correctly: at the left of the domain, a right-moving shock is
followed by air expansion fan, and on the opposite side, a weaker, left-moving shock
is followed by another rarefaction fan. This problem is essentially one-dimensional
in nature. The HLLC, Roe and TSRS solvers are contact-preserving, and develop
the iustability early in the course of the simulation. Before the interaction, the blast
fronts are strongly distorted. Not only do the post-shock regions show high amplitude
oscillations, but also do the mnain fronts show distortion. The HLLC/E solver switches
to the non-contact preserving in the direction transverse to the shock and dissipates
the small instabilities quickly. The figure shows an essentially omne-dimensional flow.
Quantitatively, the maximum vertical velocities during the course of the simulations
have been recorded. The maximum horizontal velocity varies between 13 and 32. The
HLLC and TSRS get vertical velocities of 3.03 and 3.01 respectively, whereas the Roe
solver predictions show vertical velocities as high as 8.45. The HLLC/E solver results
it vertical velocities O(10°7). The hybrid solver seenis to successfully minimize the
odd-even instability.

A second test-case is the classical blunt body in liypersonic flow, which triggers
the carbuncle phenomenon. A Mach 10 flow over a circular rod is simulated. The gas
is calorically perfect, with v = 1.4, and the rod has a circular cross-section. 80160
grid cells are used to solve this problem. Figure 3.5.2 shows the temperature isolines
for the carbuncle problenr using the HLLE Riemannu solver. The stagnation region is
correctly captured, and no deformation of the leading shock is observed. The use of
more accurate Riemann solvers that do not neglect the middle wave leads to improper
captures of the curved shock, as seen in Fig. 3.17. The Roe solver is the most sensitive
to this instability, and results in the formation of a very strong shock deformation.
The whole interaction is changed. The other Riemann solvers are also subject to the
istability. Kinks are forined along the main shock front which lead to slip lines i the
post-shock regions. The flow-field is perturbed by the instability. Tle hybrid solver
reduces the impact of the instability, an are showing a slight instability as well. It is
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Figure 3.16: Isoliues of thie temperature field for the carbuncle test case using the
HLLE Riemann solver.

(a) Roe (b) HLLC (c) TSRS (d) HLLC/E

Figure 3.17: Isolines of the temperature field for the carbuncle test case using
contact-preserving Riemann Solvers and the HLLC/E hybrid Riemann solver.
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Figure 3.18: Radii of the blast wave fronts as a function of time for the case of
planar, cylindrical and spherical Blast waves.

apparent that the HLLC/E case suppresses almost completely this instability.

The last test presented here is the point source explosion of Sedov. In this problem,
the far-field of an explosive charge is considered to reach a self-similar state. Sedov
(1959] quantified the normalized profiles behind the outgoing blast waves, and showed
that the radius of the outwards-going follows R(t) o t?/("+2) where n = 1 for a
planar explosion, n = 2 for a cylindrical one, and n = 3 for a circular explosion. The
following simulations have been performed. The initialization consists in an initial
radius of 8.5dx, where dx is the spacing of the uniform grid, of high pressure, set to
19.73. The outer environment is composed of fluid at rest, at a pressure of 107°. The
density is set to 1 everywhere. The fluid is made of a calorically perfect gas with
v = 1.4. 128z1x1 grid cells were used for the planar case, 128x128x1 grid cells for
the cylindrical case, and 12821282128 for the circular case.

The temnporal evolution of the radii of the blast waves was collected for all cases,
and are presented in Fig. 3.18. Curve-fits to these profiles show that their evolutions
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follow closely the analytical result of Sedov [1959]. Furthermore, the resolution of a
cylindrical or spherical phenomenon on a Cartesian grid usually leads to a-symmetric
solutions, as, froin a numerical stand point, the propagation speed in the direction
aligned with the cells and in the transverse directions is not identical. The extension
of the one-dimensional hydrodynamic solver to multi-dimensional siinulations should
minimize this type of errors. Figure 3.19 shows the normalized pressure distribution
versus radius for every point in the domain. The reference data have been obtained

- 256 2D grid | |
— 4096 1D grid| |

1.05

Figure 3.19: Sedov’s point explosion problem: pressure profiles of the omne-
dimensional reference and two-dimensional simulations.

from a high-resolution one-dimensional study. The shock is captured over two to three
cells. Furthermore, the scattering of the data is smaller than one grid cell of the two-
dimensional grid, highlighting the very small anisotropy obtained in the resolution
of this cylindrical problem on a Cartesian grid, hence showing the appropriatencss
of the extension of the upwind scheme to multi-dimensional simulations. Due to the
coarseness of the two-dimensional grid compared to the one-dimensional reference
simulation, the field of the coarser simulation is filtered on the grid, and averaged
over the cell volume, so that the pressure peak is not fully recovered.

The results of these different verification studies have shown that the shock-
capturing immethodology developed here can efficiently capture discontinuities in super-
sonic flows, and that its extension to multi-dimensional problems is adequate. Shocks
and contact are captured at their right propagation speeds. Smearing of the contacts
has been observed, i good agreement with other state of the art numerical methods
for supersonic flows. The sensitivity of the scheme to classical instabilities has been
shown to be considerably reduced by the hybrid Riemann solver. This nuinerical
method does not perform very well for very strong rarefactions, but such features are
not found in the typical applications this method is intended for.
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3.6 Assessment and verification of the hybrid method-
ology

The hybrid numerical inethodology described in Sec. 3.2 is designed to detect discon-
tinuities in the flow through the evaluation of the flow smoothness, Eqn. 3.11. The
nuinerical scheme employed to compute the interface flux reverts to a shock capturing
method if the smoothuess exceeds a threshold value, see Equ. 3.12. The values for the
noise factors and thresholds have been set from numerical experiments of typical flows
of interest, and are hereafter described. The smoothness of the pressure field is eval-
uated in order to distinguish pressure oscillations due to acoustic fields froin pressure
jumps associated with shocks. The density field on the other hand, can be related to
species gradients, contact discontinuities, flaine fronts or shocks. This knowledge of
typical flow counditions is used to assess the numerical scheme coefficients.

The proposed approach is validated over a series of tests. The classical Shu-
Osher testcase counsiders in a simplified one-dimensional configuration the interaction
between a shock aud a field of turbulence. The capture of this problem requires a good
capture of the shock wave and a reduced dissipation of the turbulent field. Second, the
interaction of a vortex tube with a normal shock is examined. The problemn involves
the generation of acoustic pulses (requiring smooth resolution) caused by the shock
front deforimation.

3.6.1 Assessment of the Hybrid Scheme Parameters

Gradients in the pressure field can be caused by multiple physical phenomena (coher-
ent structures formation, reaction, explosion, etc...). Their evolution can be either
isentropic (rarefaction fan, acoustic wave, compression fan) or anisentropic (shock
wave). Acoustic waves that involve relatively high pressure gradients steepen into
propagating shocks due to the non-linearities of the Euler equations. Compression
fans turn into shock waves due to the self-steepening characteristic of the pressure
field. As a consequence, even rather small pressure gradients need to be detected by
the sioothness parameter. ep = 0.05 is found to permit a correct distinction between
acoustic waves and self-steepening or shock waves. With the shock capturing method
employed here, the resolution of a shock wave front extends over two to three cells.
The curvature of the pressure peaks at the head and foot of the shock wave, and the
smoothness factor has been found relatively insensitive to the value of the thresh-
old coefficient. For the present study, S% = 0.5 has been cliosen, but no significant
difference in the flow resolution was observed when using S¥ = 0.2 and S = 0.8.
The numerical experiments used to determine these values were involving idealized
one-dimensional and fundamental three-dimensional shock / turbulence interactions
(see section 4.3).

The smoothness evaluation of the density ficld is somehow more intricate. Typ-
ically, strong density discontinuities occur in shock regions (and are then detected
by the pressure switch described above), and in mixing layers, at the interface be-
tween two fluids of different density/temperature (tip of an injector, flame fronts,
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Richtmyer-Meshkov instabilities). A strong density curvature causes numerical os-
cillations. However, the density field and its variations can play a major role in the
dynamics of the flow mixing, and need to be resolved without excessive dissipation.

The experiments used to evaluate the parameters of the smoothness evaluation
for the density field are based on the simulation of a shock / shear layer interaction
problem (see section 4.4) and of a Richtmyer-Meshkov instability resolution, here-
after described. Larger variations of the density field are admissible as they do not
have a self steepening property, and hence do not contaminate the flow resolution as
pressure gradients do. The noise parameter ¢, = 0.1 is found sufficient to capture
strong gradients without dissipating the smooth variations in density of a compress-
ible turbulent flow. The presence of strong gradients can, however, have a dramatic
effect on the flow field, and S,‘," = 0.25 is used to ensure a good resolution of the
density variations. The performance of the hybrid scheme in practical applications is
hereafter illustrated.

3.6.2 Simulation of a Richtmyer-Meshkov Instability

Richtmyer-Meshkov instabilities (RMI) involve the impulsive acceleration of a density
interface. The initial instability gives rise to a linear growth of the initial perturba-
tions. This regime is followed by a nonlinear interaction, where the deterministic
structures emerging from the initial discontinuity break down into smaller scale fiuc-
tuations, eventually leading to a fully turbulent mixing region. This transition to tur-
bulent states is enhanced if the once-shocked interface is re-shocked (by a secondary
shock following the primary shock, or, more likely from an experimental standpoint,
from the primary shock reflection at the back wall of the wind-tunnel). The present
simulation focuses on the experimental study of re-shocked RMI conducted by Vetter
and Sturtevant [1995]. An interface air and SFg at room temperature is located at
0.62 1 from the back end of a wind tunnel, and is shocked by a M = 1.5 shock. Re-
shocking is obtained from back-wall reflection of the travelling shock. A schemnatic of
the configuration is presented in Fig. 3.20.
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Figure 3.20: Scheniatic of the Richtmyer-Meshkov Instability problem.

A physical domain of 0.72 x 0.135m x 0.135m is discretized using 746 x 140 x 140
grid cells, Periodic conditions are enforced in the transverse directions. In the axial
direction, the left boundary uses supersonic inflow conditions and the right boundary
is a no-slip wall. The initial interface perturbation is imposed following the model of
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Hill et al. [2006]:
z1(y, z) = ao |sin(my/A) sin(mz/A)| + a1 h(y, 2)

wlere li(y,z) is a random function which perturbs the initial interface profile to break
the symmetry and enhance the transition. ag = 0.25 em, a; = 0.025 ¢ and A =
0.27/14 ¢m were assumed.

At the initial stage of the interaction, the shaped interface evolves and leads to the
formation of finger-like structures of air that penetrate the SFg region, and the fluids
start mixing, as presented in Fig. 3.21(b) and 3.21(b). These structures result from
the hydrodynamic instability of the flow, and a good discontinuity capturing method
is needed to capture the interface growth with limited dispersion. Figure 3.21(c)
shows the regions of average switching (1/3(Xis1/2.% + Aij+1/2k + Aijk+1/2)) for this
initial stage. The normal shock is captured with the shock capturing, as visible on
the right side of the picture. Figure 3.21(b) shows the contours of the product of

(a) Density Field (b) Yair Ysr,

Y PP PP IR .

(c) A

Figure 3.21: Richitmyer-Meshkov Instability simulation at an early stage of the
interaction. (a) density field, (b) mass fractions product and (c) switch function.

mass fractions, Ya; X Ysg,, and highlights the regions where mixing is occurring. The
regions where mixing occurs are resolved using the central scheme, hence achieving a
proper resolution of the process. The neighboring zone, where the gradients with the
unmixed fluids are still high are resolved with the shock-capturing scheme.

After reshock, the transitiou to turbulence of the mixing region is enhanced. Fig-
ures 3.22(a) and 3.22(b) show the density field and the Y,; x Ysr, field after turbulent
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(a) Density Field (b) YairYsr,

Figure 3.22: Richtinyer-Meshkov Instability simulation at a late stage of the inter-
action. (a) density field, (b) mass fractions product and (c) switch function.

transition. The presence of density gradients in the mixing region is clearly visible,
although these features are not as sharp as during the initial stages. Rather, they
show the boundaries of large scale vortical structures that entrain the fluids into the
mixing region, and correspond to the interfaces between mixed and fresh fluids. In
the mixing zone, large scale vortices coexist with smaller scale turbulent eddies, and
the variations in density are more diffuse. The shock capturing scheme is employed
i the regions of strong density variations, but overall, the turbulent zone is mostly
resolved using the central scheme.

3.6.3 Shu-Osher Interaction

The Shu-Osher problem (Shu and Osher [1989]) consists in a one-dimensional shock
front propagating into a sinusoidal density distribution. As the shock passes through,
it is immediately followed by a region of rapid, high amplitude oscillations. These
short wavelengths oscillations decay further downstream of the shock, forming a re-
gion of longer wavelength oscillations which steepen into shocks, forming an N-wave
pattern. A complete resolution of the entire phenomenon and all wavelengths requires
a fairly high resolution. Furthermore, an accurate computation of shock propagation,
at the right speed, and a smooth capture of the short-wavelength variations that forin
in the post-shock region is needed to resolve all the physical features of this flow. This
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makes this simple test particularly relevant to the problem of shock / turbulence in-
teraction.

The initial conditions for this problem are as follows: a shock initially located at
r = 2 propagates in the ¢ > 2 direction. The density profile is given by:

3.857142 T <2
plz) = { (3.69)

1-0.2sin(bz) z>2

while pre-shock pressure and velocity are 1 and 0, respectively. The post-shock values
for pressure and velocity are constant and equal to 10.333333 and 2.629369, respec-
tively. The domain extends from z = 0 to z = 10. The left boundary is treated as a
supersonic inflow, and the right boundary is an outflow. The gas obeys a calorically
perfect gas equation of state with an adiabatic index v of 1.4. The simulation is
finalized at a time of 1.872. Uniform one-dimensional grids are used for these com-
putations. The reference converged solution is classically obtained by performing a
lhighly resolved simulation of this same configuration (noted Ref in the figures).

The purely upwind approach cannot capture to short wavelength oscillations when
200 grid cells are employed (figure 3.23), and in this region, the dominant wavenumber
of the N-wave pattern appears as the smallest resolved wavenumber. A simulation
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Figure 3.23: Density profile at the final time for the Shu-Osher shock / entropy
Wave interaction. Ref —, Hybrid method (N=200)- - -, pure upwind (N=200) - - -,
Hybrid method (N=400) ¢, pure upwind (N=400) o .

using exclusively the smooth flow solver did not converge for the present resolution.
The oscillations around the shock front generate unphysical values for the energy.
The hybrid method leads to a crisp capture of the shock front using the upwind
scheme, while the smooth flow solver is used to resolve the post-shiock region. As a
consequence, despite the fact that the full amplitude of the oscillations is not totally
recovered, the short wavelengths are obtained in the post-shock region at this low-
resolution simulation.
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As the resolution is increased to 400 grid cells (Fig. 3.23, 3.24), the simulation
based on a purely upwind approach captures all the wavelengths of the problem,
but the inherent dissipation of the scheme prevents this approach from capturing the
oscillations amplitude. A purely central scheme simulation converges at this resolu-
tion, although, in the course of the simulation, pressure and density fields reach very
small values. The non-physical oscillations formed around the shock front, modify
the behavior of the post-shock region, but permit a capture of the oscillations. The
self-steepening waves, however, are not correctly captured, and lead to the forma-
tion of nurnerical oscillations. The hybrid approach combines the advantages of both
schemes, leading to a proper capture of the main shock, and a very good resolution of
the post-shock oscillations. Furthermore, the oscillations around the N-wave pattern
are rather small and do not amplify.
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Figure 3.24: Density profile at the final time for the Shu-Osher shock / entropy
Wave interaction using the central, upwind and hybrid scheines.

The observations made for a resolution of 400 grid cells are still valid for an ex-
tension to a resolution of 800 grid cells, presented in Fig. 3.25. The hybrid scheme
captures the physical phenomenon with limited dissipation. The main front is cap-
tured at the right propagation speed, and the formation of the short wavelength
oscillations is well simulated with the hybrid approach. Again, the N-wave pattern
formed by the self-steepening pressure gradients, is initially resolved with the smooth
flow solver. Small amplitude oscillations are formed around the discontinuities, which
remain small throughout the simulation. Overall, the hybrid scheme shows good cap-
ture of this one-dimensional shock / turbulence interaction.
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Figure 3.25: Deusity profile at the final time for the Shu-Osher shock / entropy
Wave interaction. Ref —, Hybrid method (N=800) o, pure upwind (N=800) o .

3.6.4 Shock / Vortex Interaction

The passage of a vortex through a shock wave is a problem of fundamental inter-
est. It has been extensively studied experimentally (e.g. Dosanjh and Weeks [1965],
Cattafesta and Settles [1992], Chang et al. [2004]), analytically (Ribuer [1954a, 1985],
Malesh et al. [1997]) and numerically (Ellzey et al. [1995], Inoue and Hattori [1999],
Dexun and Yanwen [2001]), with a particular emphasis on the noise production
tlirough the interaction. The passage of large coherent vortices through compression
wave contributes significantly to the shock-associated noise that is found in jet engines.
Experimental observations and numerical simulations have permitted to identify the
physical mechanisms involved in the sound generation during the interaction. The
shock deformation and the subsequent localized coinpressions and expansions lead to
the formation of a series of acoustic waves which propagate radially from the point of
interaction. Their strength is a function of the angle. The first wave generated is re-
ferred to as the precursor directly followed by the second sound wave. The shock wave
distortion and its relaxation to the undisturbed position often lead to the formation
of third and more waves.

The ability of the present nuinerical approach to capture shock / vortex interaction
and the sound generation is hereafter tested. The numerical set-up used here is
siniilar to that of Inoue and Hattori Inoue and Hattori [1999]. A standing normal
shock, corresponding to a free-stream Mach number M, is initialized at a location
xr = 0. The un-shocked fluid at z > 0 has a static pressure and temperature P, and
T, respectively. The right boundary is treated as an inflow with constant properties.
The shocked flow is on the left side of the interface and has pressure and temperature
P, and T,. The left, top and bottom boundaries are subsonic outflows. Noting R the
radius of maximum velocity in the initial vortex, the domain extends from —20R to
8 R in1 the x-direction, and from —12R to 12R in the y-direction. A vortex is initialized
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x = 2R, y =0, with a velocity profile prescribed as:

.

2
UB(T) == ’Uma:cle% (I_Ei)

R
The pressure within the vortex is obtained from the relation:
dP 2
L] (3.70)
dr 7

Defining the vortex Mach nuinber M, as the ratio between v,,,, aund the free-stream
ui-shocked speed of sound a,, the integration of the previous equation for an isen-
tropic flow gives:

= i G
Pk, (1 ~ TME@ ‘E"‘)

s 1 2
T(r) = T,,(l = VTMgel‘ﬁf)

The simulation counducted for the present study is based on the experimental study
of Dosanjh and Weeks Dosanjh and Weeks [1965]. The mean flow Mach number is
M, = 1.29, and the vortex Mach number is M, = 0.39. Following the study of Inoue
and Hattori Inoue and Hattori [1999], the Reynolds number based on the un-shocked
density, velocity and viscosity, and on the vortex radius is set to Re = 800. Figure
3.26(a) represents the density field at a time T = 10.3R/a,. This field shows the
structure of the waves generated from the interaction in the shocked region. Two
reflected shocks are formed, that propagate outwards, and the triple points that
result from the main shock / reflected shocks interaction lead to the formation of
slip-lines, that connect the vortex to the triple points. The circumferential pressurc
distribution at this timne is collected for the precursor (P,(6) at r/R = 10.3) and for
the second sound wave (P5(6) at /R = 8.3), where 6 is the angle from the horizontal,
taking the vortex as thc origin. Their behavior is typical of the quadrupolar nature
of the phenomenon. The angular variations of the normalized pressure difference
(P, — P,)/ Ps) is then computed and compared to experimental and other numerical
(Ellzey et al. [1995], Inoue and Hattori [1999])

The domain has been discretized using uniform Cartesian grids, and two resolu-
tions have been studied. A first simulation is conducted with a grid resolution of
560 x 480 grid cells. The resolution is decreased to 280 x 240 for the second sim-
ulation. Figure 3.26(b) shows the normalized pressure difference. The belavior of
the pressure fields reproduces the physical phenomena observed in the experiments.
Moreover, both sinulations are in excellent agreement with the results of previous,
mnore refined, numerical simulations. The lower resolution study reproduces the sound
generation witl good accuracy. Small oscillations start appearing at this resolution
for very negative angles ( < —120°), but do not contaminate the solution, and the
physical features remain properly resolved. The shock-capturing scheme is used in
the main flow direction within the shock thickness which extends over two cclls, and
up to three cells during the interaction. The shock-capturing scheme is also activated
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Figure 3.26: (a) Instantaneous density field showing precursor and second sound
waves and (b) angular variations of the normalized pressure difference between pre-
cursor and second acoustic waves for the shock / vortex interaction problem - com-
parison with experiments Dosanjh and Weeks [1965] and other numerical methods
(Ellzey et al. [1995], Inoue and Hattori [1999]).

in the transverse direction when the vortex distorts the shock front. The vortex core
and the acoustic pulses are entirely resolved with the smooth flow solver.

The present switch formulation is based on the evaluation of the curvature of the
pressure and density fields, as described earlier. This approach is found to permit a
good capture of the problems considered in the present study. The set of parameters
employed in the present formulation cannot, however, be considered universal. Their
range of applicability is limited to supersonic flows with moderate density gradients.
Their applicability to hypersonic configurations or flows with very large variations
in the density field should be assessed. Furthermore, these parameters are flow-
dependent by definition, and a dynamnic evaluation of the parameters as a function of
the flow field could be considered as an extension to the present hybrid methodology.

3.7 Other Computational Issues
3.7.1 Viscous Fluxes

The overall scheme for the convective and pressure forces resolution is fourth-order
accurate away from the discontinuities, and switches to the upwind scheine in regions
of discontinuity. There, the accuracy is flow dependent, and can vary between third
and first order accuracy, depending on the smoothness of the flow. The evaluation
of the viscous fluxes, subgrid terms and source terms for the £*9* evolution requires
the evaluation of first derivatives. A standard finite difference methodology is used
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for those evaluations, with second-order spatial accuracy for first derivatives, and
overall fourth-order accurate resolution of the second derivative of the diffusion equa-
tion. Calling (&, 7, () the standard computational directions of increasing 7, 7 and k,
respectively, the physical derivatives are obtained from:

Ju _a_uag +@8¢7 +8_u<9{
ox, 0¢0xr; Ondx;, OCOx;

(3.71)

where 0¢/0x;, On/0x; and 0(/Ox; are computed from the grid directly, and are fixed
in the course of the simulation. du/J¢ is obtained from the flow variables as follows:
derivatives evaluated at the cell centers are computed as:

ou 1
<8—§> ~55 (flha s -+ Bian gk — Bl v T =05 ) (3.72)
e

€—derivatives at an 7 + 1/2 interface will be obtained from:

du 1
(ag)ﬁ-l/zj,k 13 (~gagn + 10Wer g Uik + Uin1,jk) (3.73)

The £ —derivative evaluated at a j+1/2 interface is based on the extrapolated variables
(Eqn. 3.17), and reads:

du 1
(8_5) / 12 (_ufj+2,k * 8“fj+1,k - 8Ufj_1,k + ufj_z,k) (3.74)
ij+1/2,k

An identical formulation is used to compute a {—derivative at a k+1/2 interface. Fur-
therimore, it is straightforward to extend the formulation given here for £ —derivatives
to the n— and (— directions.

3.7.2 Time-Step Determination

Convection and viscous forces both contribute to the propagation of the information
from one cell to its neighbors. The inaximuin characteristic speed for the convection
is given by |u| + ¢, the viscous diffusion speed is 2v/Az, where v is the kinematic
viscosity, v = p/p, and the thermal diffusion speed is 2x/(pc,Az) = 2yv/(PrAz).
The propagatiou tiine can be defined for each cell in the domain as:

V

— 2 uf‘)
u,-E,- +CE+ 7;777

At = (3.75)

where ¥ is the average surface of the cell boundaries, and the viscous diffusion speed
has been neglected to the thermal diffusion speed (y > 1, Pr < 1). In order to
get a time-explicit 1nethod, the most restrictive propagation time of all cells, At is
obtained
. ) .
Al = min (Atfjk) (3.76)
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The actual time-step imposed for the time integration of the goverming equation
is determined froin stability considerations as:

At = Nopp AT (3.77)

The CFL number, Nepp, is used to ensure the stability of the computation, and is
schieme-dependent. Tir the current approach, a CFL numiber Ngpp = 0.25 is imposed.

3.7.3 Boundary Conditions

Typically, temporally evolving problems are configurations with at least one, and
often up to three directions of homogeneity. The use of periodic boundary conditions
in tlhese directions is a ratlrer standard approach. Other boundary conditions for
temporal problems include no-slip walls and symmetry boundaries. Spatial problemns,
on the other hand, require the integration of inflow and outflow boundary conditions
into the problem. In the present study, both temporal and spatial problems are
considered. Each boundary condition type is independently addressed in the following
paragraphs.

e Periodic BC

Periodic BCs are used for simulating flows that have at least one direction of
liomogeneity. In a homogeneous flow, the evolution of a characteristic volume of fluid
is statistically identical to the evolution of a neighboring volume of fluid. It can then
be assuined that, for siinplicity, the neighboring volume of fluid evolves exactly as the
cousidered volune.

Under this assuinption, the periodicity of the solution is used to reproduce the
interior of the domain at the boundaries, at the end of every integration sub-step
(predictor and corrector). This operation is not computational, but rather a copy
handled by communication.

o Inflows

In supersonic flows, the flow velocity is greater than the local speed of sound, and
no characteristic can propagate upstream of the flow. Hence, all the flow properties
are prescribed for supersonic inflows.

The superposition of turbulent fields on the average inflow profiles is performed
assuniing that the Taylor hypothesis can be used, that is, that the spatial location of
a turbulent field obtained from a temporal simulation can be converted iunto a time-
varying profile at the inflow of a spatial problem. The instantaneous velocity field
at the inflow x = 0 of a spatial problem is then the superposition of a mean profile

U;(y, z) and of a fluctuating field u}, obtained from a frozen turbulent field following:

U(z = 0,y, 2,t) = Us(y, 2) + ui(x = =Ugt, y, 2) (3.78)

This assumption is valid in the studies presented here, as the turbulent intensities
encountered are relatively small, and mostly solenoidal (Lee et al. [1992]).
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This approach cannot be used for simulations involving wall-bounded supersonic
flows, and alternate inflow approaches need to be used. In the current study, a
recycling rescaling methodology (RRM) is used to generate the turbulent inflow.
Originally proposed by Lund [1998] for incompressible flows, this method uses the
similarity in the turbulent structures at different downstream locations of a bound-
ary layer to construct a self-developing turbulent inflow. While a boundary layer
cannot be treated as a homogeneous flow in the direction of propagation, the scaling
laws of the inner and outer layers of the boundary layer are used to rescale these
turbulent fluctuations. This method has later been extended to compressible flows
by several researchers. A review of the most commonly used RRM is given i1 Knight
[2006]. In the present study, the RRM technique of Stolz and Adams [2003] is chosen
for its simplicity and good convergence (Knight [2006]).

Let v be the ratio of inflow and recycling friction velocities, v = v in/tr rec, it
is assumed that the friction velocity depends on the boundary layer thickness as
u, o 6'/%. Given the classical scaling laws of the boundary layer, U /u, is a function
of y* = yu,/v in the inner layer, and (U, — U)/u, a function of n = y/4 in outer
layer. Extending this scaling to the fluctuating velocities u’/u.,, v'/u, and w'/u,, the
relation between inflow plane and recycling plane in the inner layer of the boundary
is given by:

4 inUrin/V I
ul”(yn 2 / ) = uTeC(yreCUT’rec/V) Where y'i”u‘r,'in/lj = yre(.u‘r,rec/’/ (3'79)

Urin Ur rec

so that:
Uin(Yin) = Yirec(VYin) (3.80)
In the outer layer, the scaling reads:

Wi, (Yin/ Oin) _ WUt Orza)

Urin uT,TeC

wliere y,'n/(sm = yrec/(srec (381)

and:
u;n(yin) = 7u:ec(78yin) (382)

The scaling obtained for the mean value of the axial velocity U is similar. The
averaged variables are estimated using a Butterworth filter to obtain sliding time
averaged quantities, similar to Stolz and Adams [2003].

These relations hold for the velocity fluctuations and the mean axial velocity.
The niean transverse velocity, along with the mean and fluctuating thermodynam-
ics variables are assumed to have universal scaling laws independent of the fric-
tion velocity, and solely functions of their freestream value (Vo, T, po), of ¥ and
eta. For instance, the temperature field is rescaled using T"/T,, = f(y*) so that
T}, (Yin) = T;e(v¥in) in the inner layer, and T"/T,, = f(m), and T, (yin) = rlf:c('ysyin)
in the outer layer.

The scalings described above are valid in their respective layer, and a blending
Is necessary to transition from one rescaling approach to the next. The weighting
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function W(n) given by:

W) = % (1 -+ faph (%) /tanh(a)) (3.83)

where a = 4 and b = 0.2, is used to blend these two scalings, and, noting J =
W (7%y/brec), the ficld at the inflow of the spatial problem is obtained following:

Ui (Y, 2, 1) = B [7ure6(78ya b=t (0 — )]
(1 - /3) [’Yurec('yya 2 t)] =
Uy 28 = Jé; Yree(YPY, 2,8) + (1 — ’y)_V(’ysy, t)]
( 1-8) [wrec((vys, z,t) ﬂ)L] 1=V (y,1)]
Win\Y, 2, t) = IB VWreclY Y, 2,1
1-8) [vwrec(vy, 2,1)] i
Tuly,zt)= B [Tec(r’y,2,t)]
(1 - /H) [Trec(7y7 Z’ t)]
/)m(yy 2, t) = B [prec(78y1 2y t)]

(1 - ﬁ) [prec('yya 2, t)]

e Outflows

Outflow boundary conditions are imposed using a standard extrapolation metliod
for supcrsonic flows. Again, in supersonic flows, the characteristics are all out-going,
and all the properties in the boundary cells can be imposed from the interior of the
domain. For subsonic outflows, a characteristics-based formulation is used (Poinsot
and Lele [1992]). In the cases considered in the present studies, perfectly absorbing
outflows are used, as the acoustic coupling between the flows and the exits should
be avoided. The use of a sponge layer before the outflow, similar to the numerical
method of Mahesh et al. [1997], is used for the fundamental study of shock / isotropic
turbulence interaction, in order to dampen the large velocity and thermodynamics
fluctuations created by the interaction. This method consists in modifying the gov-
erning equations of motion in a small layer at the outflow of the domain, in order to
add a relaxation to the fluctuating field. The governing equations read then:

0Q _ _oF,
at a 3.’5,-

+ S — (21} (Q — Qrey) (3.85)

where X is the mean flow direction, and Q,.; are the flow properties in the absence
of turbulent structures. o(x)) is a damping factor, and varies as:

2 n
Sref [ z1=z, i
0‘(1‘1) = As Vref (Lz’.’ts) lf :L‘l Z Is (386)
0 otherwise

where ¢;.; and v,y are reference values of the speed of sound and dynainic viscosities,
L, is the domain length, and A,, z, and n are parameters of the sponge layer inethod.

e Walls
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No-slip walls are modeled as adiabatic, no-slip, acoustically reflecting boundaries.
This ensures that the interpolated velocity vector is zero at the boundary, and that
the gradients in pressure, density and species mass fractions are zero at the boundary.

Very fine resolutious are needed close to walls to capture the turbulent statistics
in the turbulent boundary layers and often, when the resolution of the turbulent
statistics in the boundary layer is found not to be critical to the overall flow evolu-
tion, slip walls, or symmetry boundaries, are used. These boundaries are adiabatic,
acoustically reflecting. The conditions of non-penetration and of conservation of the
tangential momentum are applied to the velocity field.

3.7.4 Parallelization

The developments presented here have been integrated in a parallel solver. Parallel
cormunication is implemented using a standardized Message-Passing Interface (MPI)
protocol. The resulting numerical code is portable and has been used on multiple
platforms with different architectures (Intel PC linux cluster, Cray XT4, IBM SP4
clusters, ...). The perforinance of the implementation on parallel clusters depends on
the domain decomposition, and the amount of switching between nuinerical schemes
inside a given domain. The implementation of both the upwind and central schemes
independently liave been found to scale well, almost linearly, for up to 1024 processors,
on multiple architectures (Masquelet et al. [2008]).

The stencil of the central scheme considered here extends over two cells on each
side of the interface. The MUSCL reconstruction of the shock-capturing requires two
levels of information on each side of the interface as well. The flattening method,
on the other hand, requires the evaluation of the shock thickness at the cell centers
withiin two cells from every interface, and has a stencil of two, yielding a total of four
levels of communication. Finally, the computation of the filtered rate of strain, needed
for the dynainic closure model, imposes three levels of communication. Overall, four
levels of communication are necessary for the current methodology.
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CHAPTER IV

SIMULATION OF SHOCK / TURBULENCE
INTERACTION

The shock / turbulence interaction problem is of fundamental importance. The pres-
ence of shock waves in high speed flows cannot be avoided, and a correct treatment
of their inmipact on turbulence evolution is critical in the development of this LES
methodology for compressible flows. Three cases of shock / isotropic turbulence have
been chosen in the present study, representative of the different regimes of the inter-
action: as reviewed earlier, the interaction of a field of homogeneous turbulence with
a normal shock wave leads to different behaviors depending on the incoming Mach
number. An increase in the turbulent intensity is observed through the interaction,
that increases as the Mach number is increased, and saturates for a Mach number
above 3. The amplification of the streamwise velocity fluctuations increases until a
Mach number M = 2, decreases afterward, and saturates at M = 3.

An M = 1.29 interaction is studied first, similar to the case ‘1.29A4" of Mahesh
et al. [1997]. The other two cases are for Mach numbers of 2 and 3, and are similar
to the configurations denoted ‘B’ and ‘C” in Lee et al. [1997]. These three cases
are simulated first in direct simulations. Though an exact match with the reference
data cannot be expected, due to diffcrences in numerical schemes and actual initial
conditions, these simulations are used to verify the capability of the present hybrid
methodology in reproducing the physical features of the interaction with minimal dis-
sipation, and should reproduce the qualitative and, to a large extent, the quantitative
characteristics of the interaction.

Direct simulations are performed in two stages. First, a field of isotropic turbu-
lence is generated. A field of velocity fluctuations is initialized according to a fixed
energy spectrum, and a simulation of isotropic turbulence decay is conducted, so that
the artificial initial field gains physical correlations. This procedure will be described
first. This turbulent field is used at the inflow of a spatial problem of shock / turbu-
lence interaction. The domain of computation is attached to the shock front, and a
statistical study of the interaction is obtained. Cownparison of the present simulations
with other reference DNS data shows the correct capture of the physical phenomena
associated with this type of interactions at all regimes. These direct simulations are
used to perform an a-priort study of the LDKM closure model for this interaction,
followed by an LES of this canonical test case, to assess the performance of the closure
model in a-posteriori analyses.
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4.1 Initial Field of Isotropic Turbulence

The generation of an initial field is performed following the procedure given in Knight
et al. [1998]. The steps of this initialization are:

e Generate a random field of velocity fluctuations and compute its Fourier trans-
form,

e Subtract the divergent part of the field,

e Compute the energy spectrum in Fourier space associated with these iuitial
random fluctuations,

e Scale all Fourier coefficients, using the ratio between expected and actual energy
in the wavenumber mode this coefficient contributes to,

e Re-construct the velocity field using inverse Fourier transform.

This procedure initializes a field of isotropic, dilatational-free turbulence accord-
ing to a given energy density spectrum. It should be noted that the velocity field ouly
is initialized with this method. All thermodynamics variables are assumed constant.
In the context of compressible turbulence studies, more realistic field generation ini-
tialize the thermodynamics fluctuations associated with the velocity field (see, e.g.,
Ristorcelli and Blaisdell [1997]). In the scope of the present study however, the field
of turbulence is free of thermodynamics fluctuations, similar to the reference studies
to which this study compares.

In the initial spectrum, two parameters can be chosen independently, namely the
energy density and the rate of dissipation, through the following relations:

o E(k)dk =k
f0J2V’{2E(/‘C)dK =€ (41)

The Reynolds numnber of the initial field is related to these two parameters through

the relation:
20 k

3 /e
Several analytic mmodel spectra exist that mimic some features of real turbulent spec-
tra. The Pao spectrum is often used for high Reynolds numbers flows. Its formulation
explicitly includes an inertial range with a —5/3 law, and both the energy containing
and dissipative ranges. This model spectrum is however a poor representation for

low Reynolds number flows, and the following von Karman model spectruin is often
preferred (see, e.g. Lee et al. [1997]):

E(x) = ?;—2\/?% (%)4&;9 [—2 (%)2] (4.3)

R, = (4.2)
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Figure 4.1: Temporal evolution of the velocity skewness (left) and turbulent Mach
number (right) in the simulation of isotropic decaying turbulence.

where kg is the most energetic wavelength. It is straightforward to show, using the
second relation in Eqn. 4.1 that this most energetic wavelength is related to the
Taylor micro-scale through the relation:

Following the work of Mahesh et al. [1997], the initial energy spectrum follows the
model spectrumm given in Eqn. 4.3. The initial turbulent Mach number is M, = 0.22
and Ry = 39.5. The most energetic wavelength is given by kg = 6. The domain of di-
mensions 67 x 27 x 27 1s discretized using 243 x 81 x 81 grid cells with uniform spacing.
Periodic BCs are applied on all sides of the domain. The simulation is perforined us-
ing the hybrid methodology, but no switching occurs during the computation, entirely
resolved with the fourth-order central scheme.

The simulation of turbulent decay is conducted until a Ry = 19.1 is obtained.
This corresponds to a non-dimensional time of tu'/A = 3.2, where v’ = wu,,,,/ V3 is
the amplitude of the initial velocity fluctuations. The skewness S; of the i—component
of the velocity field is an indicator of the coherence of the turbulence.

S,' = s (45)

As reported in Mahesh et al. [1997], a skewness —0.6 < S; < —0.4 indicates a well-
developed turbulent field. The temporal evolution of the average velocity skewness
S and of the turbulent Mach number during the course of the isotropic turbulence
decay is shown in Fig. 4.1. At the end of this simulation, the turbulent Mach
nmnber has decayed to M; = 0.14. The initially constant therinodynamics field
evolves in the course of the simulation, and small temperature and density fluctuations
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Figure 4.2: Schiematic of the shock / Isotropic turbulence interaction configuration.

are present in the flow (prms/p &= 0.01). This initial field i1s used at the inflow of
the shock / turbulence interaction problem of M = 1.29 described hereafter. A
similar proccdure is performed to generate the initial turbulent field for the two other
interactions. The final fields have a Reynolds number of Ry = 20, and M, = 0.11.

4.2 Direct Simulations of Shock / Isotropic Tur-
bulence Interaction

The fields of well-developed turbulence are superposed on a mean velocity at the
inflow of a spatial problem. Figure 4.2 shows a sketch of the shock / isotropic tur-
bulence interaction studied here. In the first simulation, a M = 1.29 standing shock
is initialized at * = 7/2 fromn the Rankine-Hugomniot relations based on the mcan
incoming thermodynamic state. The spatial problem extends over 47 x 27 x 27, and
231 x 81 x 81 grid cells are used to discretize this configuration. The grid generation
is performed following the stretching function given by Mahesh et al. [1997] for the
same problem, so that a refined grid is obtained around the mean location of the
shock front. The two high Mach number cases are solved with the same resolution,
231 x 81 x 81 grid cells. The physical domain dimensions are (27 + 1) x 27 x 2. The
grid is clustered close to £ = m, mean location of the shock.

For all three cases, the coordinate system of reference is attached to the mean shock
location, and supersonic inflow and characteristic outflows are used. Periodicity is
imposed in the transverse directions. A sponge layer method is applied before the
outflow of the domain in order to damp the turbulent oscillations. This method is
described i section 3.7.3, and the values of the parameters in this method follow the
study of Mahesh et al. [1997], A, =5, n =3 and (L, — z,)/L, = 0.14.

The coordinate system of reference is attached to the mean shock location. Super-
sonic inflow and non-reflecting characteristic-based outflow conditions (Poinsot and
Lele [1992]) are applied. All cases are simulated by solving the non-filtered Navier-
Stokes equations, since the resolution permits a capture of all the physical scales
involved in the problem, except within the shock. Using a shock-capturing method-
ology leads to a shock with a finite thickness. The computation of the viscous terms
within this thickness being questionable, only the inviscid part of the governing cqua-
tions have been solved within this region, both for the present DNS calculations and
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for the LES computations presented later in this study.

Statistics are collected for two flow-through-times, after the first two flow-through-
times have been discarded to wash out initial transients. The profiles of statistically
averaged Reynolds stresses in the normal and transverse directions are plotted in Fig.
4.3(a), 4.3(b) and 4.3(c), and compared to their respective reference DNS simula-
tions. It should be noted that the profiles for the Reynolds stresses in the transverse
directions show slight differences between uy and uj statistics, similar in amplitude
to that reported by Lee et al. [1997] for the same cases. Hence, for clarity, the aver-
ages of those two profiles are plotted each time. The statistics in the shock region are
strongly perturbed by the shock oscillations, and a high value is obtained for the axial
Reynolds stress from the temporal averaging operation. These velocity fluctuations
are not of turbulent nature, and this region should be disregarded for all physical
interpretations, as also noted by other authors, e.g. Mahesh et al. [1997], Lee et al.
[1997].

It is known from previous studies that the interaction of a shock wave with a
turbulent field leads to a corrugation of the front which, through its oscillations and
the formation of localized compressions and expansions, generates acoustic energy
(Ribuer [1954b}). Downstream of the shock, the evanescent acoustic waves trausfer
thie acoustic energy into turbulent kinetic energy, hence leading to an overall amplifi-
cation of the turbulence levels. It is inferred from the capture of the Reynolds stresses
behavior that this energy transfer is correctly captured by the present DNS study.

Analysis of the behavior of the hybrid algorithm shows that the upwind scherne is
used for less than 3% of the normal flux evaluations and less than 2% of the transverse
flux evaluations. The turbulent features are then mostly resolved using the smooth
flow solver. The flux difference splitting shows a good capture of the shock front and
of its corrugation. The acoustic energy generation as well as the transmitted turbulent
kinetic energy are correctly simulated by the hybrid method. Good agreement with
the reference DNS data is obtained, with less than 5% differences in the amplitude
of the Reynolds stresses profiles.

The relevance of the hybrid methodology is assessed in these direct simulations.
The inadequacy of upwind methods for turbulent simulations was noted by Lee et al.
[1997], who reported a significant dissipation of the turbulent field in shock / isotropic
turbulence interactions, resolved with a 6*—order ENO scheme. This is illustrated
in the present study of shock / turbulence interaction through the resolution of the
same problems, using purely upwind schemes. The flux-difference splitting method
developed in the context of the present hybrid method (noted FDS in the following)
is employed first. Also, an alternate higher-order upwind method has been used:
the Piecewise Parabolic Method (PPM, Colella and Woodward [1984]) is a higher-
order flux difference splitting scheme, commonly used in astrophysical siimulations,
and previously employed for DNS studies (Mirin et al. [1999]). The implementation
used for the present calculations is identical to that of the FLASH code (Fryxell
et al. [2000]), except no artificial dissipation was employed for these simulations, in
order to reduce the numerical dissipation. The contours of Reynolds stresses for the
three Mach number flows considered here are presented in Fig. 4.4. These profiles
arc compared to the hybrid scheme simulations, since this approach performed well
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for the resolution of the shock / turbulence interaction problems, and showed a good
capture of the turbulent statistics. The initial turbulent decay in the pre-shock region
is correctly captured by the upwind methods, but the statistics in the post-shock re-
gion do not represent the turbulence evolution correctly. The transfer from acoustic
to kinetic energies is reproduced for the lowest Mach nuinber, where both upwind
methods show a reasonable resolution of the turbulent statistics. For higher Mach .
number cases, however, the rates of decay are strongly over-predicted. The amplifi-
cation of the turbulent levels due to the acoustic energy trausfer is better predicted
using the PPM approach, but the subsequent excessive decays are similar for both
upwind methods. As a consequence, the physical behavior of the configurations is not
captured correctly, and the upwind methods are found unadapted to the resolution
of such problems. The following analysis focuses on the results obtained with the
hybrid nmiethodology only.
The flow being homogeneous in the y— and z— directions, a spectral analysis is

performed in the radial direction. The energy density spectrum of a given variable

f at the transverse wavenuinber k; = k:y2 + k,? is computed as:
1 .
Ep(k)=>_ 5 (ky ko) f(ky k) for Vi + k2= k2 (4.6)
ky ks

where f (ky, k.) is the discrete Fourier transform of the variable f, and f* (ky, k) its
conjugate. Figure 4.5 represents the energy spectra for the axial (F,2) and transverse
(Ey2 42) velocities, for all three Mach number configurations, at three locations: just
before the shock (koxr = 8.5 for M = 1.29, kox = 11.5 for M = 2.0 and M = 3.0), at
the location of minimum longitudinal Reynolds stress behind the shock (kqz = 10.5
and kox = 13), and at the peak of longitudinal Reynolds stress (koz = 13.5 and kor =
17). It is observed in Fig. 4.5(e) that the compression exerted by the shock reduces the
fluctuations of axial velocity in the low wavenumbers, but enhances the fluctuations at
higher wavenumbers. The amplification of the stress further downstreain is known to
be the result of evanescent acoustic waves formed by the shock oscillations. Those act
mostly on the low wavenumbers. The global budget for the longitudinal fluctuations
is an increase in the level of turbulence, more pronounced at high wavenumbers.
The spectra for the transverse velocities, shown in Fig. 4.5(f), are globally amplified
between kgr = 11.5 and kgz = 13. Further downstream, the transverse fluctuations
are reduced at low wavenumbers and amplified at higher wavenumbers. Overall, the
amplification is more pronounced at higher wavenumbers. This is in accordance with
the findings of previous DNS simulations, where a decrease in most characteristic
length-scales of turbulence was observed (Lee et al. [1997)).

The results of these direct nuinerical simulations are filtered in order to evaluate
the driving terms in the evolution of the subgrid turbulent kinetic energy in the
context of shock / turbulence interaction. A coarser grid is generated: 106 x 32 x 32
grid cells are used to resolve the same computational domains. Following the study of
Garnier et al. [2001], the grid spacing in the shock normal direction is refined at the
mean shock front to recover the niinimum spacing of the DNS study. Fig. 4.6 shows
the profile of volume ratios between DNS cells and LES cells for the M = 2.0 and
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Figure 4.6: Ratios of the grid cell volumes between LES cells and DNS grids for the
M = 2.0 and M = 3.0 shock / isotropic turbulence cases.

M = 3.0 cases. The coarsening results in volume ratios greater than 16 everywhere
but in the shock region, where it is decreased to around 6.5. Fields from the dircct.
siimtulation are filtered onto the LES grid using a top-hat filter.

A statistical average of the filtered field (taken over 40 instantaneous realizations)
is obtained and used to study the behavior of the closure model for this configura-
tion. Also, the dynamic Smagorinsky model (DSM) is analyzed during this a — priori
study. The DSM closure has been found to perform well in many fundamental stud-
ies of turbulence. In particular, this closure was found by Garnier et al. [2002] to
reproduce the physics of the shock / turbulence interaction in LES studies. It is used
in the present fundamental study for comparison purpose, but it should noted that
the application of the DSM for practical flows is rather limited, as the formulation
is ill-posed, and requires an averaging of the closure coefficient, over homogeneous
directions or in a Lagrangian sense, in order to yield stable resolution.

As noted by Dubois et al. [2002], a high correlation between exact and modeled
turbulent features in a priori studies does not necessarily imply superior perforiance
by the model in a posteriori studies, but rather shows that the model is able to mimic
somnte of the physical features of the turbulent flow. Typical profiles of the correlation
coefficient for the subgrid stresses using the LDKM and the DSM closure approaches
are shown in Fig. 4.7 for the different shock / turbulence interaction cases. The DSM
approach is known to have poor corrclations in a — priori studies of turbulence, and
also observed in Fig. 4.7. The a priori behavior of the LDKM for the subgrid stress
shows a good correlation with the exact stress. Furthermore, the production of k%
using LDKM has a correlation coefficient above 0.8 almost everywhere.

The main terms of the exact governing equation for the subgrid turbulent kinetic
energy are computed from the filtered DNS field, and their profiles are represented
in Fig. 4.8. The convection of k% is balanced everywhere by the production and
the dissipation, except in the post-shock region close to the shock front. Very close
to the shock front the pressure dilatation correlation plays a role in re-distributing
the thermal energy into fluctuating energy. This region is localized, adjacent to the
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turbulence interaction cases.
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shock average location, and its overall impact is small compared to the diffusion of
k*9* due to pressure fluctuations, which plays a more important role over a broad
region. This latter term is often neglected in the modeling of the governing equation
for the subgrid kinetic energy and is explicitly modeled in the LDKM formulation
given in Chap. 2. Furthermore, the turbulent Prandtl number, the closure coefficient
for the diffusion due to subgrid pressure fluctuations, is computed dynamically, as
shown in Sec. 2. The other terms in the governing equation for k*9° that arise
fromn compressibility effects, the pressure-dilatation correlation and the compressible
turbulence, were found negligibly small for these cases, and are thus neglected in the
current modeling approach.

4.3 LES of Shock / Isotropic Turbulence Interac-
tion

The three cases of shock / turbulence interaction studied by direct simulations are
repeated in the context of LES. The resolutions and grids for these studies are identical
to that used in the a — priori analysis described above. Three different modeling
approaches have been tested: under — resolved simulations are performed first, that
1s, simulations without any closure model. Next the LDKM closure model presented
earlier is employed. Finally, the dynamic Smagorinsky model (DSM) is used. The
iniplementation followed the formulation given in Moin et al. [1991]. A dynamic
evaluation of Pr; is used along with that model as well, with an averaging procedure
over the homogeneous directions of the computation to maintain stability. However,
the LDKM inodel does not require any averaging in all the reported results. A filtered
instantaneous field from the DNS simulation is used to provide the initial condition
for the LES sinulations. Also, the field of isotropic turbulence used at the inflow
plane is filtered onto a grid of uniform spacings. The problem is simulated for one
flow through time, and statistics are collected for another two flow through tinies.

Figures 4.9(a), 4.9(c) and 4.9(e) represent the Reynolds stresses in the shock-
normal direction for the three LES, along with the results from the filtered DNS
data. The under-resolved simulations do not capture the rate of decay of the resolved
turbulent energy in the pre-shock region, and lead to an over-estimation of the level
of turbulence in the post-shock region. The closure of the subgrid terms should nimic
the energy dissipation that occurs in the high wavenumbers of the energy spectruni.
In the absence of subgrid scale models, the only source of extra dissipation can be
the nuinerical dissipation. In these LES computations, about 5% of the axial fluxes
and 3% of the transverse fluxes are evaluated using the dissipative scheme. Those
interfaces are localized within the mean shock thickness. Thus, it appears that the
current solver’s numerical dissipation has only a minimal effect on the turbulent decay
in the pre- and post- shock regions. This is an important requiremnent for a LES solver
to demonstrate without any subgrid model.

The peaks of normal Reynolds stresses are recovered by the under-resolved DNS
silnulations presented for M = 1.29 and M = 2.0, but not for M = 3.0. The location
for this peak in the highest Mach number case is captured, but the amplitude is
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under-predicted. This is attributed to the grid coarsening, and the subsequent loss of
corrugation, already observed by Garnier et al. [2002]. This effect is more pronounced
at higher Mach numbers, as the induced corrugation is reduced.

The closure models mimic the influence of the small, unresolved scales onto the re-
solved field, and this leads to a better capture of the resolved turbulent decay in both
the pre- and post- shock regions. Figures 4.9(a), 4.9(c) and 4.9(e) show that both clo-
surc approaches perform well in the pre-shock regions, reproducing the pre-shock tur-
bulent decay. In the post-shock regions, the peak of axial stresses is under-estimated
by both methods. The LDKM closure however shows a better recovery of the tur-
bulent fluctuations in that region, with a reduced dissipation compared to the DSM
closure. Further downstream, it is noted that, independently of the absolute levels of
turbulence, both closures give the right rate of decay of turbulence. The transverse
fluxes are represented in Fig. 4.9(b), 4.9(d) and 4.9(f). Again, the under-resolved
simulation does not capture the decay of resolved turbulence. The amplitudes in the
post-shock regions are better simulated by the DSM approach for those quantities.
However, both the LDKM and the DSM simulations show comparable results for
the decay rates, which are correctly captured for all three cases. The energy spectra
arc computed from the LES field before the interaction (koz = 8.5 for M = 1.29,
kox = 11.5 for the two other Mach numbers) and at the peak of Reynolds stresses in
the post-shock region (kox = 13.5 and koz = 17). These spectra are shown in Fig.
4.10, along with the spectra computed from the filtered DNS fields. The physical
processes are well captured by the LES simulations. The axial velocity fluctuations
spcetral distribution is significantly changed even at the smallest Mach number, and
the small wavenumbers are reduced whereas the larger wavenumber fluctuations are
amplified through the interaction. The transverse velocity fluctuations are amplified
for the higher Mach number cases, and the amplification is uniform over the span of
wavenumbers. The LES simulations show a slight over-prediction of the transverse
velocity fluctuations at the small scales. This leads to an overestimation of the level
of transverse fluctuations in the post-shock region, but does not affect the capture of
the turbulent decay that follows.

Within the LDKM formulation, the closure coefficients are computed dynamically
based on the resolved fields, and vary significantly in both space and time during
the course of the simulations. The statistical averages profiles of ¢, and Pr, are
presented in Fig. 4.11 for the lowest and highest Mach numbers simulatcd here. The
closure coefficient for the subgrid stresses varies spatially, and increases as the grid
is clustered close to the mean shock locations to account for the reduced grid size.
Consequently, the eddy viscosity decreases continuously as the flow approaches the
shock. Downstream of the interaction, the subgrid stress coefficients vary spatially
following the turbulence amplification and reach a constant value further downstream,
as the turbulence reaches a state of hiomogeneity dominated by the turbulent decay.
A slight decrease in the average value for ¢, is found as the mean Mach number is
increased.

Similar to the behavior of ¢,, Pr, decreases as the grid is refined close to the
mean shock location, and reaches a stationary state downstream of the interactiomn.
The values of this closure coefficients do not change significantly in the lowest Mach
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number case, but a stronger reduction in Pr; is obtained for M = 2.0 and M = 3.0.
Pry is close to 0.7 in all cases before the shock, and decreases to 0.4 in the region of
homogeneous turbulence for the higher Mach number cases, leading to an enhanced
diffusion of the energy. This effect is particularly important for the higher Mach
number cases as the levels of temperature fluctuations are increased through thc
interaction with the stronger shock waves.

These conditions were found to be satisfied in more than 95% of the computational
cells away froin the shocks. Within the shock region, the fulfillment of these conditions
dropped to 75%. Even when these realizability conditions were violated, the difference
between the computed subgrid stress closure coefficient and the highest admissible
value for ¢, remained small.

This fundamental study of shock / turbulence interaction has showed that the
numerical scheme developed for the resolution of turbulence in supersonic fields per-
mits the capture of both turbulent fields and discontinuity within one scheme, with
minimal dissipation. Furthermore, the LDKM closure model is found to be well
adapted to the modeling of the turbulent field in such configurations, showing a good
reproduction of the turbulent statistics evolution across the interaction.

4.4 LES of Shock / Turbulent Shear Layer Inter-
action

The interaction of a shock with a shear layer is a very common flow feature in super-
sonic flows. Sonic and supersonic jets give rise to a complex cellular structure, wherc
shocks and expansions interact with the turbulent outer shear layer. Shock waves are
inherently present in scramjet intakes and combustors, and interact with the shear
layers formed from the injection systems. Occurrence of shock waves in supersonic
commbustors induces pressure losses that cannot be avoided. However, the impact of
shock interactions with mixing regions is of considerable importancc and needs to
be understood.Past studies show that mixing is significantly reduced in free shears
as the convective Mach number is increased. This consideration led Druimnmond and
Mukunda [1989] to study the gain in mixing and combustion efficiency obtained by
simulating a dual shock interaction with a reacting free shear layer, but observed
moderate improvements only. This configuration was later considered analytically
by Buttsworth [1996] who estimated the vorticity gain through the interaction to
be only about 16%. The original study of Drummond and Mukunda [1989] was a
two-dimensional simmulation, and the shocks impacted the shear layer before it had
developed a fully unstable and self-similar state. Also, the analytical method treated
the flow in the laminar limit, so that the turbulence amplification that occurs during
the interaction was not included. This configuration is revisited in the present three-
dimensional LES study, with a particular focus on the turbulence evolution during
and after interaction with the shock waves.

The geometry and flow conditions for the present configuration are hereafter de-
scribed and represented in Fig. 4.12. A primary grid of 250 x 80 x 40 cells is used
to discretize the domain of 17 em x 10 em x 3 em. The grid is clustered towards
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Figure 4.12: Schematic of the base Mixing layer configuration.

the centerline, to provide a proper resolution of the mixing layer, with a minimum
spacing in the vertical direction of 0.1 mm, following the spatial resolution reported
in the numerical simulation of Drummond and Mukunda [1989]. A refined simulation
is performed to assess the accuracy of the coarser resolution. This secondary grid has
a resolution of 400 x 140 x 60 cells, reaching a minimun spacing of 0.04 mm at the
centerline.

The upper stream (hereafter denoted with a subscript «) is a mixture of Ny/Ho,
with 10% hydrogen in mass, a static temperature of 2000K and a static pressure of
1 atm, flowing at Mach 2.0 (that is, a velocity of 2672 /s with the thermally perfect
gas EOS ewployed for this simulation). The lower stream (hereafter denoted with a
subseript ) is an airflow with static temperature and pressure set to match that of the
upper stream. The Mach number is also set to 2.0, which corresponds to a velocity of
1729 m/s. The convective velocity for this flow is about U, = 2100 m/s. The mean
velocity profile at the inflow of the domain is given by a hyperbolic tangent:

_ U+U U, =T _ _
Tl ’tanh<25%>, V) =W =0 47

where 87 is the initial vorticity thickness for the profile, here set to §° = 0.4 mm. The
temperature profile at the inflow is set as a function of the imposed velocity profile
following the Crocco-Busemann relation (Vreman [1997], Doris et al. [2000]).

T(y) =5 UW)? = Ul +Uy)(Us + b))

U T1U.—TuU, (48)
+(Tu - ’I‘l)[ju(_y[)j, s IU"_U, :

The convective Mach number for the flow under consideration is M, = 0.43, which
makes it moderately compressible, with turbulent structures that still resemble those
of the incompressible mixing layer.
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In order to trigger transition, a velocity perturbation is added to this mean profile
(Fortuné et al. [2004], Fu and Li [2006]). The fluctuating velocity field has an energy
spectrum that follows eqn 4.3. The most energetic wavelength for this spectruin
is chosen such that xod? = 2, and the amplitude of the fluctuations is such that
urms Tepresents 4% of the convective velocity for the current problem. The forcing
described above is applied in the region of the mixing layer only, according to:

Ulx =0,y,2,t)=Uly) +u'(z = —Ut,y, z)exp (— (%) ) (4.9)

The top and bottom boundaries are treated as subsonic outflows for the reference
un-shocked mixing layer. For the shocked mixing layer, shocks corresponding to a
10° turning angle are imposed nuinerically by setting appropriate inflow conditions
to the upper and lower boundaries. The right boundary is a supersonic outflow, and
periodicity is imposed in the spanwise direction. After allowing five flow-through-
times of initial simulation, statistics are collected for another five low-through-times.

The incompressible mixing length growth rate is often given by the spatial-growth
model of Dimotakis Dimotakis [1986]:

N (1_7') 1—\/§
i Trr/s (1 e 1+29(1+7)/(1 - r)> )

where ¢ is a constant independent of the velocity ratio (r = U, /U,) and of the density
ratio (s = pu/pi), with cs = 0.36 Slessor et al. [2000] (although empirical correlations
and curve-fits suggest 0.25 < ¢s < 0.45). This coefficient diminishes as the com-
pressibility within the mixing layer increases. A mixing layer compressibility is often
quantified solely based on the convective Mach nuinber (Papamoschou and Rosliko
[1988]), though some modified parameters have been suggested (II. in Slessor et al.
[2000] is a modification to M, for varying v flows). Goebel and Dutton Goebel and
Dutton [1991] studied a M, = 0.453 mixing layer, and the growth rate parameter
was estimated to be ¢s = 0.21 (Slessor et al. [2000]). In the present simulation,
where 7 = 0.647, s = 2.370 and the convective Mach number is M, = 0.43, the
mixing growth rate is found to follow 4" = 0.228cs, aud tlie value for the coefficient
found from the vorticity thickness evolution cs,, = 0.206, which closely matches the
experinental value.

The turning angle imposed at the top and bottomn boundaries induce shocks with
very similar properties (shock angles, pressure ratios across the shocks, density ratios
across the shocks, etc...). They intersect on the centerline at an axial location of
X = 6.2 cm. The velocities in the post-shock region are then found to be essentially
horizontal, U = 2030 m/s, M = 1.35 in the upper streamn, and U = 1310 m/s,
M = 1.35 in the lower stream. The velocity and density ratios across the mixing
layer are almost unchanged (r = 0.645, s = 2.40). The post-shock convective Mach
number is M, ,, = 0.29.

In the early stage, the development of the mixing layer differs between coarse and
fine resolutions simulations, but stabilizes within a few centimeters from the inflow.
The flow evolution and turbulent statistics obtained from the coarser grid simulations
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were found to match closely those obtained with the refined grid. All results given
hereafter are based on the coarser grid siniulation.

Figure 4.13 shows a top view of the iso-surfaces of the ()—criterion for the base
mixing layer and its shocked counter-part. This variable is defined as the second

Shocks Impact
o s
Figure 4.13: Iso-surface of the Q-criterion (Q = 10%s72) for the base mixing layer

(top) and the shocked mixing layer (bottom), colored by the local Mach number
flow is from left to right.

invariant of the velocity gradient tensor and is well-suited to vortical fields identifi-
cation (Dubief and Delcayre [2000]). Those snapshots are taken at the same pliysical
time, after 10 flow-trough-times have elapsed. The forcing imposed on the mean pro-
file at the inflow of the spatial simulation leads to a fast transition to turbulence.
The spanwise vortices develop early, and the ribs structures connecting the different
rollers show the three-dimensionality of the configuration. The vortical structures
that pass through the shocks are being compressed, and the post-shock structures
resemmble more two-dimensional rollers than the un-shocked mixing layer structures.
Later downstream, those structures re-develop a strong three-dimensionality. The
fast growth of the structures after the interaction affects the mixing layer growth
rate. The thickness based on the 90%-H, mass fraction is shown in Fig. 4.14(a) for
the reference mixing layer along with that of the shocked shear layer. A reduction of
the thickness is observed as the shocks interact with the mixing region. This evolu-
tion is due to the spatial compression of the mixing region by the two shocks, and is
not related a reduction in mixing efficiency. On the contrary, the growth rate of the
shocked layer is significantly increased right after the interaction. This observation is
confirmed by the profile of mass entrained by the mixing layer, showed in 4.14(b). In
this figure, the results of both resolution studies are represented, showing the essen-
tially grid-independent flow evolution after the interaction. The rate of momentumn
exchange between the two layers is significantly increased due to the shock / shear
interaction. Within 6 ¢m from the location of the interaction, the growth rate stead-
ies out at the level of the undisturbed mixing layer growth for that convective Mach
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Figure 4.14: Mixing Layers growth rate based on a 90% H, mass fraction, and mass
entrainment within the mixing layer thickness.

nuiber. It should be noted that this growth rate is 6% higher than its unshocked
counter-part, as the decrease in convective Mach number associated with the shocks
leads to a reduction in compressibility effects. The forcing imposed on the velocity
and temperature profiles at the inflow of the simulation enhance the transition to
a fully turbulent shear layer. Statistically averaged velocity correlation have been
collected at several downstream locations along the domain. Figures 4.15(a) and
4.15(d) show the normalized statistics of u,ms and < w'v’ > respectively, showing
that self-similarity is reached from z = 8 ¢m on. The normalized profiles of v, and
Wrms Sllow soine small variations with downstream locations, essentially recovering
the self-similar state.

The shocks inipact increases the relative levels of turbulence in the shear layer.
Figure 4.16 shows the profiles of turbulent velocity correlations downstream of the
interaction. The axial and cross-wise autocorrelations are amplified by the shocks
close to the point of interaction. Figures 4.16(a) and 4.16(c) show that their relax-
ation to the undisturbed, self-similar states is achieved over a very short distance,
less than 3 cn. A more significant increase in the level of turbulence is observed for
the transverse velocity fluctuations. This gain persists over a larger distance, and
relaxes to the stable level 7 em downstream of the point of interaction. The Reynolds
stress < u'v’ > also shows this trend: largely amplified by the waves, it relaxes to its
undisturbed level within a distance from the interaction that is greater than that for
Urms. The turbulence evolution in the shock / shear interaction is found to be mostly
affected by two competing plienomena. The initial amplification of the turbulent
levels is similar to the shock / isotropic turbulence interaction studied earlier. The
turbulent eddies corrugate the shock fronts, and generate local compressions and/or
expansions. Furthermore, the large scale coherent structures of the shear layer con-
tribute to the shock oscillations. The shock corrugation and its mnotion lead to the
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Figure 4.15: Normalized profiles of turbulent statistics (u,s and < u'v' >) at
several locations along the reference mixing layer.

formation of local acoustic waves, and evanescent pressure waves transfer the acous-
tic energy into kinetic energy. The motions of the two shocks, while traversing the
mixing layer, are to a large extent dictated by the large scales of the flow, and are
then out of phase. As a consequence, the levels of v,,, and < u'v' > are particularly
increased by the interaction.

The level of vorticity is increased by the coinpression of the mixing layer. A lam-
inar calculation for this case showed a 25% increase in vorticity across the shocks, in
relatively good agreement with the analytical predictions of Buttsworth Buttsworth
(1996], where a 16% increase was predicted. The three-dimensional turbulent cal-
culation shows only a 11% gain in mean vorticity. The presence of turbulence and
large-scale coherent structures does not modify the overall vorticity budget signifi-
cantly for the interaction. Despite the gain in vorticity, the fast growth of the mixing
layer decreases the mean rate of strain across the mixing layer and consequently re-
duces the mean production of turbulence across the mixing layer. The high levels
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Figure 4.16: Normalized profiles of turbulent statistics (4rms, Urms, Wrms and <
u'v' >) at several locations along the shocked mixing layer.

of fluctuations are not maintained by the external flow. The normalized turbulent
statistics, Vyns/AU and u'v'/AU? shown in Fig. 4.16(b) and 4.16(d), relax to the self-
similar profiles. The reduced convective Mach number leads to higher values of the
turbulent correlations once stationary state is reached, compared to the un-shocked
case. The compressibility effects are significantly reduced, and the statistics across
the layer show a behavior close to incompressible mixing layers.

Overall, the mixing improvement obtained from the shock / shear interaction is
localized, but high. Furthermore, the increase in static temperature associated with
this method can be beueficial to the combustion efficiency as well. Pressure losses
are however induced by the shocks, and their interaction with the shear layer. The

stagnation pressure is easily obtained in this thermally perfect gas flow by integration
of the isentropic condition:

dP dT
—R? + Cp? =0

ds

(4.11)
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between static and stagnation temperatures and pressures. It is found that the inter-
action between the shocks and the mixing layer has a very little contribution to these
losses. A 2.5% total pressure loss is induced by the two shocks, in the free-streams,
as seen in Fig. 4.17. The amplification of the losses through the interaction is very
small compared to the losses solely due to the shocks alone.

0.02 T T T

)

L}

L|— Reference mixing layer }

L -~ Shocked mixing layer !

001 )

Y (m)
=3
T

0. 1 1 5 " s 1 N 1
05 6.5ew05 TeddS  7.5¢405 8e+05  B8.5¢+05
(Pa)
o

Figure 4.17: Profiles of total pressure before the outflow.

The statistically averaged model coeflicients profiles across the mixing layers for
the reference and shocked mixing layers are presented in Fig. 4.18 and 4.19 respec-
tively. They exhibit a self-similar-like behavior. The closure coefficient for the subgrid
stresses peaks at the mixing layer centerline and decreases towards the edges, con-
sistent with the peaks of Reynolds stresses at the centerline observed in Fig. 4.15(a)
and 4.15(d). The coefficient for the subgrid dissipation peaks at the edges of the mix-
ing layer, where the value of k*9° is smaller. The turbulent Prandtl number profiles
follow the trends of the subgrid stress closure coefficient, peaking at the centerline,
and decreasing towards the edges. The turbulent diffusion of energy at the centerline
is associated with the coherent vortices of the mixing layer, and the subgrid contri-
bution is found relatively weak, with a higher Pr,. Closer to the edges of the layer,
the subgrid contribution to the energy budget is more important, as the turbulent
Prandt]l number decreases significantly.

The interaction with the shock wave induces a scattering of the closure coefficients
at the edges of the mixing layer, where the turbuleut motions are lesser. Within the
layer thickness however, their behavior is not strongly modified, showing essentially
the same variations and the same amplitude as in the reference mixing layer case. In
these computations again, the realizability constraints were found satisfied in more
than 95% of the computational cells away from the shocks. Within the shock region,
the fulfillment of these conditions dropped to about 80%.

The present study has showed that the shock / 'shear layer interaction leads to
a turbulent amplification in the post-shock region, which can significantly enhance
the mixing rate and/or the conibustion efficiency. The gain in mean vorticity due to
the interaction is found to follow the analytical prediction (Buttsworth [1996]) to a
good extent, despite its limitation to laminar flows with mean shear. The coherent
structures and turbulent fluctuations strongly affect the growth of the layer, but have
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Figure 4.18: Profiles of the LDKM closure coefficients for the reference mixing layer.

a limited influence on the average vorticity. The evolution of the turbulent shear layer
downstream of the interaction is dictated by a relaxation process to the self-similar
state of the new mixing layer. In particular, the reduction in velocity difference across
the layer leads to a reduced mean production, and the levels of turbulence decrease
with downstream location.

107




0.1

Figure 4.19: Profiles of the LDKM closure coefficients for the shocked mixing layer.
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CHAPTER V

SONIC JET IN SUPERSONIC CROSS-FLOW

A fast and efficient mixing of fuel and oxidizer is a requirement in most operational
non-premixed combustion systems. This is of primary importance, and one of the
biggest design challenges, especially in supersonic combustion systems, where the
residence in the combustion chainber is very short. To achieve this goal, a good pene-
tration of the fuel into the free-stream and high levels of mixing are required. Further-
more, in order to sustain and stabilize a flame, efficient re-circulation of hot products
is needed to anchor and to continuously initiate the reaction in the mixed fluids.
Several injector designs have been studied experimmentally that generate high levels
of mixing, sustain the flame, and minimize pressure losses throughout the process.
Cavity-based (Gruber et al. [1999]) or strut-based (Waidmanun et al. [1995]) injections,
swept ramp injectors (Gruber et al. [2000]) and wall-normal injection (Ben-Yakar and
Hanson [1998]) are some of the well studied designs.

Probably the simplest among all the injection designs, the jet in cross-flow (JICF)
is an cfficient method for supersonic mixing of fuel and oxidizer and for supersonic
combustion, as it allies all the properties required in an efficient injector. A schematic
of the JICF shown in Fig. 5.1 highlights some of the features observed during the
interaction (Gruber et al. [1996], Dickmann and Lu [2006]). A blockage of the free-
streamn flow is induced by the transverse mmomentumn of the jet, and a bow shock
is formed ahead of it. Under the influence of the shock, the incoining turbulent
boundary layer separates, and the thickening of the boundary layer in the near-jet
region creates a A—shock pattern, and leads to the separation of the incoming layer
and the formation of a re-circulation region. In reacting flows, these regions can
trap hot radicals and products, hence anchoring the flame. The under-expanded jet
expands suddeuly as it penetrates into the low pressure cross-streain and a high-
speed shear layer is forined between the ambient air and the jet. Furtlierinore, as the
expansion fan generated at the edges of the injector interacts with the shear layers,
the boundaries of the jet are deflected inwards, and compression waves from these
shear layers deflection form the barrel shocks. Finally, a Mach disk normal to the
jet flow compresses the injected fluid. As the jet penetrates into the free-stream, a
high pressure region is created by the shock ahead of the jet (on the windward side),
whereas downstreamn, a low pressure region exists at the base of the jet as a result of
the jet expausion.

Instantaneous flow fields and vortical structures of JICF in lower-speed flows have
been the topic of many experimental and numerical studies (see, e.g. Audreopoulos
[1985], Yuan et al. [1999], Lim et al. [2001], New et al. [2003]). Past cxperimental
studies of JICF in supersonic crossflows have suggested that some of these vortical
structures were also observed in supersonic JICF (VanLerberghe et al. [2000], Ben-
Yakar et al. [2006]). The jet shear layer is at the interface between the high-speed jet
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Figure 5.1: Schematics of the supersonic JICF interaction.
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and the low-velocity re-circulation on the windward side, and the separated region on
the leeward side. Kelvin-Helmholtz instabilities (KHI) are generated, due to the high
levels of shear, evolve into large-scale vortices that propagate along the jet boundaries,
and contribute to the mixing process. Furthermore, a pair of counter-rotating axial
vortices is formed in the plume region. These vortical features are regarded as the
main phenomena for mixing the fluids in JICF. Horseshoe vortices are generated by
the interaction between the incoming boundary layer and the jet, and rernain close to
the wall of injection. These vortices do not interact with the jet, and do not participate
in the nixing process. Finally, vertical wake vortices form between the wall boundary
layer and the jet plume, downstream of the injection. Their contribution to the mixing
process is uncertain (Gruber et al. [1997]). Although simple from a conceptual point
of view, it can be inferred from the above observatious that this injection methodology
leads to a rather complex flow pattern.

The jet shear vortices, the counter-rotating vortex pair and the wake vortices
have clearly been identified in actual supersonic JICF experiments (VanLerbergle
et al. [2000], Beu-Yakar et al. [2006]). However, a detailed capture of all the physical
features of the flow is difficult, due to the intense fluctuations, the high levels of
unsteadiness, and the flow speed. RANS, LES and hybrid RANS/LES simulations,
on the other hand, have been used to isolate some of the key average and instantaneous
features of this interaction (e.g., Tam et al. [1999], Dickmann and Lu [2006], Peterson
et al. [2006], Sriram and Mathew [2008], Kawai and Lele [2008]). In particular, some
vortical structures typical of the high-speed interaction have been highlighted in these
studies. Shock induced separations and horseshoe vortices have been identified. Some
studies (Peterson et al. [2006], Kawai and Lele [2008]) have shown the particular
nature of the KHI in supersonic JICF, related to the unsteady deformation of the
barrel shock in response to the pressure oscillations within the incoming boundary
layer (Kawai and Lele [2008]). All these phenoinena add some complexity to the
dynanics of the flow. Other vortical structures, such as the hanging vortices (Yuan
et al. [1999]) or the windward vortex pairs (New et al. [2003]), found in subsonic
JICF, have not been clearly identified in supersonic flows.

A LES of supersonic JICF is perforined to resolve the time-averaged and unsteady
features of this interaction. The present study focuses on the JICF configuration
studied experimentally by Santiago [1995] and Santiago and Dutton [1997]. Detailed
velocity fields have been obtained using LDV measurements, in the centerplane of
the streainwise direction, and in two cross planes downstream of the injection. Mean
velocities in the axial and transverse directions, and statistics of the fluctuating veloc-
ities are available for comparison. In addition to comparing with these experimental
data, anotlier focus of the present study is the investigation of the unsteady fea-
tures of this interaction, and the impact of the free-stream Mach number and jet to
free-stream momentum ratio on the flow dynamics.
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5.1 Configuration and Parameters for the JICF
Study

The present study focuses on the physics of a sonic jet injected into a supersonic
crossflow. The configuration reproduces the experimental study presented in Santi-
ago [1995], Santiago and Dutton [1997] and VanLerberghe et al. [2000], where time-
averaged and fluctuating velocity profiles from LDV measurements, PLIF imaging
and analysis of the mixing have been reported. The experimental conditions are as
follows. Air is injected through a choked nozzle with an exit diameter d = 4 mm
located at the bottom wall of a wind-tunnel. The free-stream in the wind tunnel is
a M = 1.6 airflow. Stagnation conditions for the injector and the main stream are
given in Tab. 5.1. The test section has a width of 76 mm and a height of 36 mm.

Table 5.1: Experimental parameters for the jet in cross flow experiment of Santiago
and Dutton [1997].

Case A

free-stream jet

Mach number 1.6 1.0

Pitag (kPa) 241 476

Piiatic (kPa) o 251

Pnorm shock (kpa') 160 -

sy (1K) 295 295

Pstatic (kg/m3) 1.05 3.5

velocity (ms™!) 446 315
pU? (kg m~1s7?) 2.03 10° | 3.52 10°

J = (pUz)jet / (pU?) 173
PR=19;4/Ps 8

Noting (z,y, z) = (0,0,0) the center of the injection port, the computational do-
main used for the present study extends from x = —16.5d to x = 7d in the streamwise
direction, and from y = 0 to y = 9d in the transverse direction. The spanwise depth of
the experimental facility has not been fully simulated for computational savings, and
extends from z = —6.3d to z = 6.3d. This domain extent is sufficient to capture all
the pliysical processes, allows comparisons with the experimental data and prevents
the wave reflections from the side of the domain from interacting with the regions of
interest. Two grid resolutions have been used to resolve this configuration. A coarse
grid consists of 300 x 150 x 100 cells with grid stretching to refine the resolution
close to the injector and close to the lower wall of the wind tunnel. The resulting
resolution is finest at the tip of the injector, where Az/d = 0.023, Ay/d = 0.022 and
Az/d = 0.032. Peterson et al. [2006] found that the inclusion of the injection plenum
chamber in tlhie domain of the simulation improved the jet flow rate, and therefore,
this section is simulated and resolved using a 23 x 60 x 23 grid. A finer grid is also
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used to assess grid independence of the reported simulations. This grid employed
600 x 225 x 200 cells in the test-section, and 46 x 90 x 46 grid cells in the injection
chaber.

The test-section inflow conditions at ¢ = —16.5d are generated using the rescaling -
recycling method described in Stolz and Adams [2003]. At every instant, the temporal
fluctuations in velocity, temperature and density are extracted from the recycling
plane located at x = —5d, rescaled, and reintroduced at the inflow plane, x = —16.5d.
This method permits the self-generation of an inflow boundary layer with turbulent
structures. The boundary layer displacement thickness at the recycling plane was
constrained to match that obtained in the experimental study, 6* = 0.59 mm. The
inflow in the plenum chamber uses a stagnation condition-based characteristic inflow.
The outflow at x = 7d is a standard supersonic extrapolation. The bottom boundary
of the wind-tunnel, as well as the sides of the plenum chamber are treated as no-
slip adiabatic walls, whereas symmetry conditions are applied to the top wall of the
section. Periodicity conditions are used in the spanwise direction. After washing
out the transients due to the initial conditions, statistics are collected for over 5
flow-through-times.

5.2 Comparisons with Experiments

The niean velocity profiles collected in the centerline plane at four different stations,
x/d =2, 2/d =3, z/d = 4 and z/d = 5 are compared to the experimental velocity
fields in Fig. 5.2 for both grid resolutions. Similarly, profiles of velocity fluctuations
are compared to the experiniental profiles in Fig. 5.3. For both the second and last
locations, velocity profiles have been acquired from centerplane measurements and
from cross-plane acquisitions. Consequently, 3 sets of data for the axial velocity and
2 sets of data for the transverse velocity are available for these locations, and have all
been used for comparison in the following plots. Some of the experimental uncertainty
is highlighted in the scatter of the velocity fields obtained for different acquisitions.
However, to a very good extent, the global behavior and the amplitude of the profiles
are reproduced from one realization to the next. Note that the turbulent statistics
in the free-stream do not go to 0 in the experimental data, probably due to some
perturbations in the free-stream, and/or due to experimental noise.

The axial velocity predictions from the LES simulations show a fairly good agree-
ment with the experiments, and the wake of the jet plume is correctly captured. The
peak of vertical velocity is over-estimated at the first station, but decays quickly with
downstreain location and reaches amplitudes in good agreement with the experimen-
tal data. The velocity fluctuations are related to the boundary layer turbulence, to the
wake of the jet and to the shear vortices (examined in more details later). The profiles
and amplitude of u,,,s match quite well the experimentally measured fluctuations. At
the last station, a noticeable difference is seen with one set of experimental measure-
ments. It should be noted, however, that the agreement with the other two sets of
measurenients is satisfactory. The transverse velocity fluctuations are overestimated
in the near-jet region, but relax to the experimental profiles further downstream. For
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Figure 5.2: Profiles of mean axial and transverse velocities in the centerplane at
four locations downstream of the injection. Comparison between numerical and ex-
perimental results (at z/d = 3 and z/d = 5, 3 sets of experimental data for U and 2
for V, 1 set of data otherwise - Santiago and Dutton [1997]).
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Figure 5.3: Profiles of fluctuating axial velocity statistics in the centerplane at four
locations downstream of the injection. Comparison between numerical and experi-
mental results (at /d = 3 and z/d = 5, 3 sets of experimental data for u,,,, and 2
for v,ms, 1 set of data otherwise - Santiago and Dutton [1997]).
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Figure 5.4: Contours of Reynolds stresses in two cross-planes downstream of the
injection (z/d = 3.0 and z/d = 5.0). Comparison between experimental (left) and
numerical (right) results.

Urms agail, a fair agreement with one set of data is obtained, whereas the agreement
with the other experimental acquisition is less satisfactory.

As mentioned above, mean and fluctuating velocity profiles have been collected at
two cross-sections downstream of the injector, at z/d = 3 and /d = 5. A comparison
of the contours obtained from experiments with the numerical result is presented in
Fig. 5.4. The kidney-shaped vortices observed in the section of the counter rotating
vortex pair (CVP) are highliglited in these plots The overall shape is correctly cap-
tured by the numerical simulation. At the first cross-plane, the width of the mixing
region, estimated using the field of u,,,,, is slightly over-estimated by approximately
0.2d. The core of the CVP and the amplitude of the fluctuations are, however, in good
agreement with the experimental field. At z/d = 5, the predictions on the jet plume
extent and on the ainplitude of fluctuations match the experimental observations.

The present simulation overall compares favorably to the experimental data. The
statistics in mean and fluctuating velocities in the centerplane and at two different
cross-sections show sinilar trends and amplitude, and the structures of the flow are
recovered. A more systeniatic look at the time-averaged and instantaneous vortical
structures developed in this interaction is examined next. The reference case described
above (Case A) is complenented by two other cases: a sonic jet into an M = 2
crossflow (Case B) and a case where the jet to freestream momentum ratio, J =
(PU)jet/(PU?) oo, is increased to J =5 for a M = 1.6 crossflow (Case C), compared
to J = 1.6 for Cases A and B. The stagnation conditions of Cases B and C are also
given in table 5.1. The geonietry is identical to the reference case and the boundary
conditions are also kept identical for Case B. For Case C, an extrapolation boundary
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Table 5.2: Numerical parameters for two jets in crossflow simulation: (a) free-stream
Mach number M = 2 and (b) jet to freestream momentum ratio J = 5.

Case B Case C
free-stream jet free-stream jet
Mach number 2.0 1D 1.6 1.0
Paiag (KP=) 284 476 241 1428
Pitatic(kPa) 36 251 57 754
Pnorm shmk(kPa) 160 — 160 =
Tame (1K) 295 295 295 295
Pstatic (kg/m?) 0.77 3.55 1.05 10.65
velocity (ms1) 514 315 446 315
pl? (kg m157%) 203 10° |3:52.10° | 20310° | 10.56 10°
J = (pU?) 00 / (pU?) oo 1.73 5.20
R = Bl Los 13 25

condition is used at the top boundary, in order to prevent the stronger bow shock
from reflecting and interacting with the jet mixing region.

The computational results for case A, shown in Figs. 5.2 and 5.3 demonstrate a
good grid independent behavior and are in good agreement with experimental data.
Furthermore, spectral analyses of the energy densities at some key locations, shown
in Fig. 5.5, show an energy decay that scales with the inertial range scaling w=%/3.
Similar energy spectra are obtained from the finer resolution simulation, showing the
appropriateness of the computational grid to the resolution of this turbulent problem.
Based on this observation, and consistent with the LES philosophy of using as coarse
a grid as possible to capture the features of interest, the coarser grid results are
analyzed in more details in the next sections, and the coarser grid is employed for
cases B aud C listed in table 5.1.

5.3 Time-Averaged Flow Features

Some of the well documented time-averaged structures of JICF have been reviewed
earlier, and are revisited here in the context of the present simmulations. Figure 5.6
shows the pressure contours and some streamlines of the incoming flow for the three
cases considered liere. The mean flow blockage due to the jet leads to the formation of
a primary strong shock wave ahead of the jet and induces a separation of the boundary
layer. The weak shock generated by the subsequent thickening of the layer causes the
formation of a A—shock structure, as visible in Fig. 5.6. A primary recirculation
region is formned ahead of the jet, centered at around z/d = —1.31, y/d = 0.13 for the
reference case, in good agreement with the experimental observations z/d = —1.25
and y/d = 0.13. This region has a triangular shape, and interacts with the jet shear
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Figure 5.5: Energy spectra at three locations of the centerplane: (a) along the
developing jet shear layer (r/d = —0.83, y/d = 0.4), (b) in the wake of the jet
(xz/d = 2.35, y/d = 2.6) and (c) further downstream in the jet wake (z/d = 4,
yd= 27

layer from (z/d = -0.5, y/d = 0) to (z/d = —0.67,y/d = 0.59). A smaller anti-
clockwise rotating recirculation is formed between the primary recirculation and the
jet boundaries. As seen in Fig. 5.6(b), the bow shock in front of the jet is weaker than
in the other two cases, and the boundary layer separation is weaker. As a consequence,
the primary re-circulation is smaller, and its center is located at x/d = —1.35 and
y/d = 0.09. Due to a higher momentum, the jet in case C penetrates further into
the crossflow, and the bow shock is much stronger than in the two other cases. The
boundary layer separation is moved upstream, and the recirculation region is located
at z/d = —-1.9, y/d = 0.25.

The expansion of the jet increases the Mach number of the injected gas, and a
maximuin velocity of 690 m/s is reached at a location z/d = 1.2, y/d = 1.3 for
the reference case. Santiago and Dutton [1997] report a maximum velocity location
of x/d = 1.25, y/d = 1.38, but estimated the maximum velocity to be 589 m/s.
The penetration of the jet depends strongly on the momentuin ratio, but also on the
effective back pressure (Everett et al. [1998]). Despite an identical post normal-shock
pressure of 160 kPa in the freestream for all three cases, the pressure increase through
the A—shock depends on both the strength of the separation and the jet pressure.
As reported earlier, the bow shock for case B is weaker than in the other cases, and
the effective back pressure is lower, leading to a greater penetration of the jet into
the crossflow, leading to a greater penetration of the jet into the crossflow, and the
maximum velocity is reached at z/d = 1.52, y/d = 1.48. The jet in case C penetrates
further into the mean flow, and creates a stronger bow shock, leading to a higher
effective back pressure and a higher pressure drag. The highest velocity for Case C
occurs at z/d = 1.88, y/d = 2.52.
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Figure 5.6: Pressure field, temperature gradient contours and streamlines in the
centerplane for the three JICF cases. The flow is from left to right.
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Figure 5.7: Vortical structures in the JICEF configuration represented by the iso-
contours of Q variable (Dubief and Delcayre [2000]). Flow is from left to right

For all cases, most of the injected fluid is found to pass through the windward and
lateral barrel shocks, and across the Mach disk. A small amount only of jet fluid passes
through the leeward barrel shock and remains over-expanded. As a consequence, two
shocks are formed: a strong shock at the tip of the Mach disk compresses the jet fluid
that passes through the leeward barrel shock and penetrates into the free-stream
(most visible for case C pressure contours in Fig. 5.6). A weaker shock is generated
from the re-attachment point at the wall, which propagates into the freestreani.

The key observable three-diiensional structures in the JICF are illustrated in Fig.
5.7 for the reference case. Similar time-averaged features are observed for the other
cases, and are not repeated here, for brevity. The second invariant of the velocity
gradient tensor, often denoted @), is well-suited to vortical fields identification (Dubief
and Delcayre [2000]). An iso-surface of negative Q is shown first in Fig. 5.7(a),
highlighting the shear-dominated regions of the average flow, and identifying the
regions of high velocity gradients. The complex shock pattern in the centerplane
discussed earlier leads to the formation of three-dimensional re-attachment shocks.
These structures propagate outwards, interacting with the jet wake and the boundary
layer.

An iso-surface of positive ), highlighting the regions dominated by vorticity over
strain (Q criterion), is shown in Fig. 5.7(b). The impact of the bow shock onto the
boundary layer induces separation, and the vortical recirculation region follows the
curved shock. Along the side of the jet, hanging vortices are formed by the skewed
miixing layer between the streamwise flow and the vertical jet (Yuan et al. [1999]). The
origin of the hanging vortices lies between the bottom wall and the boundaries of tle
laterally expanding jet, as shown in Fig. 5.8(a). The center of these vortices moves up
with downstream location along the jet boundaries, as shown in the evolution from
Fig. 5.8(a)-5.8(c). Although presented here for a statistically averaged field, it should
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be noted that these structures are observed to remain quasi-steady in the course of
the simulations. Further downstream, a counter-rotating vortex pair is formed in the
wake of the jet. In the present context of supersonic flows, the formation of this
vortex pair is found to be the result of several simultaneous phenomena. The jet
coluinn is deformed by momentum, pressure of the crossflow at the windward side,
and is sheared along the lateral edges, giving a kidney-shape to the initially circular
jet cross-section, as visible in Fig. 5.9. After being deflected by the jet, the main
stream expands along the sides of the jets and swerves back towards the centerplane of
the wind tunnel. Actually, the circulation induced by the hanging vortices enhances
this flow convergence towards the centerplane, as seen in Fig. 5.8(b)-5.8(c). As the
flow converges, a higher pressure region is formed and the pressure increase leads to
the formation of two outwards moving shocks, and of a strong upwash velocity which
penetrates into the jet plume, and creates the circulation of the counter-rotating
vortex pair (Chenault et al. [1999]). This phenomenon is illustrated in Fig. 5.8(d)
and 5.8(e). On each side of the centerplane, hanging vortices and vortices of the CVP
rotate in the same sense, and the hanging vortices quickly weaken. The CVP, on the
otlier hand, is amplified in the pluine of the jet, enhancing the mixing of free-stream
and injected fluid.

Iso-surfaces of the Q variable are shown in Fig. 5.10 for all three JICF cases and
case B and C show features similar to that of case A described above. Again, the
hanging vortices formed on the side of the jets are clearly visible in the three results.
For Case A, the centres of the hanging vortices form an angle of 18° with respect
to the bottoin wall. In the second case, the free-stream flow loses less momentum
through the bow shock in front of the jet, and the skewed mixing layer is inore inclined
towards the streamwise direction. The angle formed between the centre of the hanging
vortices and the bottom wall is decreased down to 14°. The opposite occurs in Case
C, where the very high momentum of the jet creates a hanging vortex with a higher
angle to the bottom wall, reaching 24°.

Another type of vortical structures is observed in these iso surfaces, present in all
three cases but particularly visible for case C. A pair of vortices generated on the
windward side of the jet, close to the point where the upper tip of the recirculation
region ahead of the jet interacts with the shear layer, evolves along the side of the jet,
above the hanging vortices, as visible in Fig. 5.10. These vortices closely resemble
the Windward Vortex Pairs (WVPs) reported by New et al. [2003] in the studies
of low-speed elliptical JICF. The under-expanded jet expands at the nozzle, and
blocks a large portion of the incoming boundary layer. As a direct cousequence,
the recirculation zone formed aliead of the jet is large, and the pressure increase,
significant. The windward side of the jet, initially circular, is deformed, leading
to a concave warping of the jet boundary, and of the subsequent vortex sheet. The
momentuni impact of the recirculation region decreases at the spanwise location where
the boundary layer flow gets around the jet core.

A bifurcation of ‘the incoming streamlines occurs at z/d = —0.6, y/d = 1.2 and
z/d = £0.75, characterizing the separation between streamlines that get into the
recirculation region ahead of the jet and streamlines that wrap around the jet. These
locations, shown in Fig. 5.11, correspond to the location where windward vortices
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(a) y/d=05 (b) y/d=1

Figure 5.9: Coutours of the average injected mass flux for two vertical planes for
the reference JICF.

(a) Case A (b) Case B

(c) Case C

Figure 5.10: Iso-surface of @ = 10®s~2 highlighting the hanging vortices for the
three JICF cases.
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Figure 5.11: Iso-surface of Q = 10®s72 and streamlines from the upper boundary
layer.

are formed. As these structures are convected downstream, they interact with the
CVP and weaken. These vortices breakdown quickly for cases A and B. They evolve
further away from the CVP for case C, hence survive longer.

The convergence of the freestream towards the centerplane downstream of the
jet creates a circulation in the near wake region, and two steady wake vortices are
generated. Also, horseshoe vortices are formed downstreamn of the injector, close to
the wall in the wake of the jet. These vortices, also visible in Fig. 5.8(d) and 5.8(e)
along the bottom wall, rotate in a direction opposite to the CVP above them. Again,
in the cases of supersonic JICF presented here, and unlike tlie subsonic JICF, the
formation of the lhorseshoe vortices is closely related to the outwards motion of the
shock pair created in the centerplane and discussed earlier.

As expected, the averaged fields show a rather complex flow evolution in this JICF
problem: 1nany sources of vorticity have been identified, and could play a role in the
overall mixing between jet and freestream. In order to gain understanding in the
dynainics of this interaction, these steady features are revisited using the unsteady
data from the simulations in the next section.

5.4 Unsteady Features and Flow Dynamics

Images of the injection region have been acquired using PLIF by VanLerberghe et al.
[2000] in the same experimental facility, and under similar experimental conditions
as the study of Santiago and Dutton. Large scale unsteady vortices generated on
the windward side of the jet and convecting along the jet boundary and along the
jet plume have been identified in this study. Some of the snapshots acquired in this
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(c) (d)

Figure 5.12: Large scale structures for the reference JICF, case A: (a) and (c)
experimental observation by acetone PLIF of VanLerberghe et al. [2000], (b) and (d)
nuinerical snapshots of the passive scalar field and density gradient contours.

experimental study are reproduced in Fig 5.12 along with some instantaneous contours
obtained from the present simulation (case A). In these figures, the boundaries of the
under-expanded jet are delimited by the contours of temperature gradients. Sirilar
large scale structures are known to exist even in low-speed JICF due to Kelvin-
Helinloltz instabilities (KHI) (Fric and Roshko [2004]) of the vortex sheet created at
the jet nozzle. These KHI occur along the windward and the lateral sides of the jet,
forining a circuinferential vortical structure rather than a vortex ring, as originally
thought (Lim et al. [2001]).

In high speed JICF, the large scale vortices are also observed in the centerplane,
but their generation is niore coniplex than in the low-speed case. Figure 5.13 repre-
sents a time-series of the teniperature gradient magnitude in the centerplane of the ref-
erence case, showing the highly unsteady nature of the interaction. The phenormenon
is ennhanced in the present supersonic interaction by the unsteady deformation of the
barrel shock illustrated in the time-series. The vortical structures and pressure fluc-
tuations of the incoming boundary layer interact with the jet at the nozzle exit. The
inteusity of the pressure fluctuations inside the recirculation region reaches 13 kPa
and unsteady compressions are generated within the jet flow. The formation of a
compression is illustrated in Fig. 5.13 over a time interval of 8 us. The wave steepens
into a localized shock wave as it penetrates into the jet and propagates along jet
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(g) Time-averaged field

Figure 5.13: Contours of the temperature gradients magnitude (a-c) and of the
Mach number field with density gradient contours (d-f) at three consecutive instants.
(g) tinme-averaged Mach number field.
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Figure 5.14: Contours of the temperature gradients magnitude in the z/d = 0
cross-plane at ¢t = 8us of the reference JICF.

boundary. The moving shock finally reconnects the barrel shock further downstream
of the injection and creates a kink in the jet boundary at the reattachment point , at
x/d = 0.75, y/d = 1.55 (seen at t = 16 us, Fig. 5.13(c)). A pocket of unshocked jet
fluid is then detached from the jet. ,

Figures 5.13(d)-5.13(f) show close-up views of the jet windward jet boundary
representing the Mach number field at the same three instants. The pockets of jet
fluid formed by the unsteady shock motion within the jet leads to the ejection of high
Mach number fluid that interacts with the recirculation region. The highly unsteady
nature of the windward barrel shock impacts the time-averaged Mach number field
(Fig. 5.13(g)), which shows a very diffuse windward-side barrel shock.

The pockets of jet fluid ejected through this process are submitted to high levels
of shearing, and the vortical structures formed by KHI show intense levels of vorticity.
Due to the higher vertical velocity of the jet fluid, the vortices formed through the in-
teraction, and visible in Figs 5.13(a)-5.13(c), rotate counter-clockwise, are convected
along the jet boundaries and break-down into smaller scale turbulence further down-
stream at the boundaries of the jet plume. Distortion of the windward barrel shock
at the centerplane is also reported in the PLIF visualizations of VanLerberghe et al.
[2000] (reproduced here in Fig. 5.12) where kinks in the upstream jet boundary are
observed. Also, the unsteady formation of shock waves within the under-expanded
jet, in the centerplane, was also observed and reported in other numerical study (Pe-
terson et al. [2006], Kawai and Lele [2008]). This perturbation of the jet is found to
be strongly three-dimensional. The unsteady compression is formed at the windward
side, where the pressure fluctuations in the region ahead of the jet are the strongest,
and extend along the jet boundary and to the lateral sides.

In Fig. 5.14, contours of temperature gradient in the cross-plane z/d = 0 are
represented at the same instant as for Fig. 5.13(b), showing that the compression
wave that propagates within the jet is actually curved. The pocket of unshocked
fluid ejected through this process wraps around the jet, leading to the formation
of a circumferential vortex due to KHI. The formation of unsteady compressions
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along the lateral sides of the jet is also observed during the unsteady evolution of
the jet. The shocks that result from this interaction are found to be weaker than
those due to windward compressions, and do not penetrate the jet significantly. Asa
consequence, these perturbations do not wrap around the jet, and KHI vortices are
forined asyminetrically on the sides.

The deformations of the jet boundary due to the unsteady dynamic pressure of
the incoming boundary layer is also observed for cases B and C. Despite an identical
jet to freestream momentum ratio, the transverse jet in case B expands more at the
nozzle exit, as reported earlier. The Jet Mach number along the boundaries is higher
than in the reference case, and the penetration of the compression waves, lower. As a
consequence, smaller pockets of fluid are ejected in case B. For the same reasons, the
higher jet momentum of case C is less sensitive to the incoming perturbations in the
boundary layer, and the penetration of the compression waves into the jet is smaller.

The jet distortion described above and the vortices foriation generate strong
acoustic waves that propagate upstream into the subsonic region and interact with
the bow shock. The shock front appears wavy and unsteady, as observed in the
temperature gradient snapshots, and in experimental Schlieren images (Gruber et al.
[1995], Ben-Yakar et al. [2006]). The shock motion results in an unsteadiness of the
boundary layer separation, and a deformation of the A—shock structure ahead of the
jet is observed in the present simulations. Pressure fluctuations are responsible for the
jet boundary deformation, and this phenomenon could lead, through a self-exciting
mechanism, to the periodic formation of shear layer vortices. Actually, in a recent
study, Won et al. [2008] performed a Detached Eddy Simulation (DES) of a JICF and
showed the very periodic formation of vortical structures from the jet front, probably
a consequence of such a self-excitation mechanism. In the present calculations, no
fundamental mode of excitation is found from the pressure and vorticity spectra
computed aliead of the jet. It is likely that this difference in behavior comes froin
the levels of turbulence in the incoming boundary layer : very small amounts of
turbulence in the incoming boundary layer was reported by Won et al. [2008] in their
DES simulation, whereas the present calculations carry turbulent, and non periodic,
structures in the incoming layer.

The vortices due to fluid ejection and/or by KHI are formed along the jet bound-
ary. The three-dimensional evolution of these structures is highlighted through the
iso-surface of the passive scalar (injected from the jet), as shown in Fig. 5.15 for the
three cases. Figs. 5.15(a), 5.15(c) and 5.15(e) show large circumferential vortices that
wrap around the jet and create a large roll up. These structures form symmetrically
in a vertical plane. The windward part of the roll-up is convected upwards along
the boundary of the jet, whereas the side vortices are carried along the jet pluine.
The initially planar structures tilt and fold around the jet. These structures engulf
large amounts of freestream fluid, and a mixing of jet and free-stream fluids at the
large scales is achieved at the periphery of the jet. Further downstream, these vor-
tical structures break down into small scale turbulence, hence enhancing the mixing
process.

The formation of vortices on the lateral sides of the jet is also observed, as il-
lustrated in Figs. 5.15(b) and 5.15(d) for cases A and B, respectively. The higher
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(e) (f)

Figure 5.15: Iso-surface of the passive scalar injected from the jet (Y3 = 0.3) colored
by the vorticity magnitude, highlighting the formation of vortical structures due to
localized and/or circumferential Kelvin-Helmholtz instabilities: (a) and (b) case A,
(c) and (d) case B, (e) and (f) case C.

129




~

(a) (b)

Figure 5.16: Visualization of an instantaneous windward vortex. Iso-contour of the
passive scalar, and superposition with an iso-surface of positive Q.

velocity of the jet leads to the formation of a roller with positive x-vorticity, and again,
carries some of the freestream fluid towards the centerplane in the wake of the jet.
These instabilities remain on the sides of the jet, and do not evolve circumferentially
around it. Their generation is related to the lateral jet compression and to KHI along
the skewed mixing layer. The impact of the quasi-steady hanging vortices in these
regions is however difficult to assess. Such vortices are found in case C as well, but
are less frequent and intense than in the other two cases. Windward vortices, on the
other hand, can be clearly identified on the instantaneous flow structure of case C.

Figure 5.15(f) shows a vortical structure formed at the tip of the recirculation, at
z/d = -0.7, y/d = 1.25 and z/d = 0.75. This feature extends along the jet boundary
and is deflected towards the streamwise direction, tilting to a vortical structure with
positive x-vorticity. Furthermore, the instabilities of the vortex sheet are observed
along the path of this structure, as illustrated in Fig. 5.16. The wavy structure of the
WVP is clearly visible in the iso-surface of passive scalar. The superposition of an
iso-surface of ) shows that small vortex tubes wrap around the WVP, due to vortex
sheet instability. Again, these WVP are found for all three cases, but have significant
amplitude for case C only.

On the leeward side of the jet, the dynamics of the flow is much less coherert.
Pressure fluctuations of the order of 4 kPa also induce barrel shock fluctuations, but
the strong deformations that lead to the ejection of fluid pockets on the windward
side are not observed here. Rather, small amplitude KHI vortices breakdown as they
pass through the shock that is connected to the Mach disk. These structures induce
high levels of velocity fluctuations in the jet plume, and do not influence the jet wake
significantly.

A significant part of the injected fluid passes through the Mach disk of the under-
expanded jet. This injected fluid does not carry a significant amount of turbulence.
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However, the jet boundary unsteadiness provoke an oscillatory motion of the Mach
disk, and velocity fluctuations are generated. Furthermore, the Mach disk induces
a significant flow deceleration, as already observed in Fig. 5.2. The large coherent
structures that develop along the jet boundary (circumferential, lateral and leeward
KHI vortices, windward vortices) are strongly sheared as they propagate along the jet
plume, and breakdown to smaller scale turbulence. Further downstream of the jet,
mostly two types of coherent structures remain. The CVP creates a large scale circu-
lation which nixes the freestream fluid with the injected fluid. Then, the turbulence
in the wake region permits a good mixing at the molecular level. Also, intermittent
wake vortices are formed and connect the CVP to the bottom wall boundary layer.
A series of wake vortices is visible in fig. 5.16(b) for case C. These structures are
formed on the lateral sides of the jet, and were found not to participate in the mixing
process of this interaction, as they do not carry any of the jet fluid.

5.5 Computational Performance and Model Anal-
ysis

The simulations of JICF presented here have required about 10, 000 single CPU howrs
of computation to wash out all the transients of the initialization, and the statistics
have been collected over five flow through times, which have required around 15, 000
hours for each coarse case. The finer resolution of the JICF case A required over
80, 000 single CPU hours before to reach statistically stationary state, and to collect
statistics. 8% of the streamwise fluxes and 5% of the spanwise and crosswise fluxes
have required the use of upwinding. The switching of the hybrid method being local-
ized, the upwind fluxes were evaluated when necessary only, and the computational
overhead due to the hybrid scheme is rather limited.

The closure coefficients have been computed dynamically using the LDKM closure
model described in section 2.3.2. These coefficients vary significantly in both space
and time during the course of the simulations. This is illustrated in Fig. 5.17, where
instantaneous and time-averaged fields of the subgrid turbulent kinetic energy and of
the closure coefficients are presented.

On the instantaneous fields, it is clear that the jet shear layer is a region of
intense turbulent activity. The model coefficients reach rather high values on both
the windward and leeward sides, and peak significantly close to the Mach disk, due to
the high levels of fluctuations of the jet boundary. The coefficients correlate with the
coherent structures elsewhere in the flow. More particularly, ¢, reaches relatively high
values in the plume and wake of the jet. The dissipation of £°9° remains relatively
small in these regions, and peaks very locally. The variations of ¢, /Pr, show how the
turbulent diffusion of total and turbulent energy is increased in the regions of shock
waves, and along the jet shear layer, where high gradients of temperature are present.
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